ترغب بنشر مسار تعليمي؟ اضغط هنا

CMB Observations and the Production of Chemical Elements at the End of the Dark Ages

65   0   0.0 ( 0 )
 نشر من قبل Kaustuv Basu
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The metallicity evolution and ionization history of the universe must leave its imprint on the Cosmic Microwave Background through resonant scattering of CMB photons by atoms, ions and molecules. These transitions partially erase original temperature anisotropies of the CMB, and also generate new fluctuations. In this paper we propose a method to determine the abundance of these heavy species in low density (over-densities less than $10^4-10^5$) optically thin regions of the universe by using the unprecedented sensitivity of current and future CMB experiments. In particular, we focus our analysis on the sensitivity of the PLANCK HFI detectors in four spectral bands. We also present results for l=220 and 810 which are of interest for balloon and ground-based instruments, like ACT, APEX and SPT. We use the fine-structure transitions of atoms and ions as a source of frequency dependent optical depth ($tau_{ u}$). These transitions give different contributions to the power spectrum of CMB in different observing channels. By comparing results from those channels, it is possible to {it avoid} the limit imposed by the cosmic variance and to extract information about the abundance of corresponding species at the redshift of scattering. For PLANCK HFI we will be able to get strong constraints ($10^{-4}-10^{-2}$ solar fraction) on the abundances of neutral atoms like C, O, Si, S, and Fe in the redshift range 1-50. Fine-structure transitions of ions like CII, NII or OIII set similar limits in the very important redshift range 3-25 and can be used to probe the ionization history of the universe. Foregrounds and other frequency dependent contaminants may set a serious limitation for this method.



قيم البحث

اقرأ أيضاً

Primordial molecules were formed during the Dark Ages, i.e. the time between recombination and reionization in the early Universe. The purpose of this article is to analyze the formation of primordial molecules based on heavy elements during the Dark Ages, with elemental abundances taken from different nucleosynthesis models. We present calculations of the full non-linear equation set governing the primordial chemistry. We consider the evolution of 45 chemical species and use an implicit multistep method of variable order of precision with an adaptive stepsize control. We find that the most abundant Dark Ages molecules based on heavy elements are CH and OH. Non-standard nucleosynthesis can lead to higher heavy element abundances while still satisfying the observed primordial light abundances. In that case, we show that the abundances of molecular species based on C, N, O and F can be enhanced by two orders of magnitude compared to the standard case, leading to a CH relative abundance higher than that of HD+ or H2D+.
The cosmic dark ages are the mysterious epoch during which the pristine gas began to condense and ultimately form the first stars. Although these beginnings have long been a topic of theoretical interest, technology has only recently allowed the begi nnings of observational insight into this epoch. Many questions surround the formation of stars in metal-free gas and the history of the build-up of metals in the intergalactic medium: (1) What were the properties of the first stellar and galactic sources to form in pristine (metal-free) gas? (2) When did the epoch of Population III (metal-free) star formation take place and how long did it last? (3) Was the stellar initial mass function dramatically different for the first stars and galaxies? These questions are all active areas of theoretical research. However, new observational constraints via the direct detection of Population III star formation are vital to making progress in answering the broader questions surrounding how galaxies formed and how the cosmological properties of the universe have affected the objects it contains.
It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant, source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place in the redshift range z=10.8 +/- 1.4, while observations of quasars and Lyman-alpha galaxies have shown that the process was essentially completed by z=6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare beyond z~7. Here we report the discovery of a gamma-ray burst, GRB 090423, at redshift z=8.26 -0.08 +0.07. This is well beyond the redshift of the most distant spectroscopically confirmed galaxy (z=6.96) and quasar (z=6.43). It establishes that massive stars were being produced, and dying as GRBs, ~625 million years after the Big Bang. In addition, the accurate position of the burst pinpoints the location of the most distant galaxy known to date. Larger samples of GRBs beyond z~7 will constrain the evolving rate of star formation in the early universe, while rapid spectroscopy of their afterglows will allow direct exploration of the progress of reionization with cosmic time.
73 - Jack O. Burns 2020
The farside of the Moon is a pristine, quiet platform to conduct low radio frequency observations of the early Universes Dark Ages, as well as space weather and magnetospheres associated with habitable exoplanets. In this paper, the astrophysics asso ciated with NASA-funded concept studies will be described including a lunar-orbiting spacecraft, DAPPER, that will measure the 21 cm global spectrum at redshifts 40-80, and an array of low frequency dipoles on the lunar farside surface, FARSIDE, that would detect exoplanet magnetic fields. DAPPER observations (17-38 MHz), using a single cross-dipole antenna, will measure the amplitude of the 21 cm spectrum to the level required to distinguish the standard {Lambda}CDM cosmological model from those of additional cooling models possibly produced by exotic physics such as dark matter interactions. FARSIDE has a notional architecture consisting of 128 dipole antennas deployed across a 10 km area by a rover. FARSIDE would image the entire sky each minute in 1400 channels over 0.1-40 MHz. This would enable monitoring of the nearest stellar systems for the radio signatures of coronal mass ejections and energetic particle events, and would also detect the magnetospheres of the nearest candidate habitable exoplanets. In addition, FARSIDE would determine the Dark Ages global 21 cm signal at yet lower frequencies and provide a pathfinder for power spectrum measurements.
We consider gravitational wave production due to parametric resonance at the end of inflation, or ``preheating. This leads to large inhomogeneities which source a stochastic background of gravitational waves at scales inside the comoving Hubble horiz on at the end of inflation. We confirm that the present amplitude of these gravitational waves need not depend on the inflationary energy scale. We analyze an explicit model where the inflationary energy scale is ~10^9 GeV, yielding a signal close to the sensitivity of Advanced LIGO and BBO. This signal highlights the possibility of a new observational ``window into inflationary physics, and provides significant motivation for searches for stochastic backgrounds of gravitational waves in the Hz to GHz range, with an amplitude on the order of Omega_{gw}(k)h^2 ~ 10^-11. Finally, the strategy used in our numerical computations is applicable to the gravitational waves generated by many inhomogeneous processes in the early universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا