ﻻ يوجد ملخص باللغة العربية
It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant, source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place in the redshift range z=10.8 +/- 1.4, while observations of quasars and Lyman-alpha galaxies have shown that the process was essentially completed by z=6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare beyond z~7. Here we report the discovery of a gamma-ray burst, GRB 090423, at redshift z=8.26 -0.08 +0.07. This is well beyond the redshift of the most distant spectroscopically confirmed galaxy (z=6.96) and quasar (z=6.43). It establishes that massive stars were being produced, and dying as GRBs, ~625 million years after the Big Bang. In addition, the accurate position of the burst pinpoints the location of the most distant galaxy known to date. Larger samples of GRBs beyond z~7 will constrain the evolving rate of star formation in the early universe, while rapid spectroscopy of their afterglows will allow direct exploration of the progress of reionization with cosmic time.
M87 is a nearby radio galaxy that is detected at energies ranging from radio to VHE gamma-rays. Its proximity and its jet, misaligned from our line-of-sight, enable detailed morphological studies and extensive modeling at radio, optical, and X-ray en
Gamma Ray Bursts (GRBs) and galaxies at high redshift represent complementary probes of the star formation history of the Universe. In fact, both the GRB rate and the galaxy luminosity density are connected to the underlying star formation. Here, we
We present a characterization of the close environment of GRB980425 based on 5-160mic spectro-imaging obtained with Spitzer. The Gamma-Ray Burst GRB980425 occurred in a nearby (z=0.0085) SBc-type dwarf galaxy, at a projected distance of 900pc from an
Due to their extreme luminosities, gamma-ray bursts (GRBs) can be detected in hostile regions of galaxies, nearby and at very high redshift, making them important cosmological probes. The investigation of galaxies hosting long-duration GRBs (whose pr
The long gamma-ray burst (GRB) rate is essential for revealing the connection between GRBs, supernovae and stellar evolution. Additionally, the GRB rate at high redshift provides a strong probe of star formation history in the early universe. While h