ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability in black hole accretion discs

88   0   0.0 ( 0 )
 نشر من قبل Klaus Schenker
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.R. King




اسأل ChatGPT حول البحث

Observations of accreting systems often show significant variability (10-20 percent of accretion luminosity) on timescales much longer than expected for the disc regions releasing most of the luminosity. We propose an explicit physical model for disc variability, consistent with Lyubarskiis (1997) general scheme for solving this problem. We suggest that local dynamo processes can affect the evolution of an accretion disc by driving angular momentum loss in the form of an outflow (a wind or jet). We model the dynamo as a small-scale stochastic phenomenon, operating on roughly the local dynamical timescale. We argue that large-scale outflow can only occur when the small-scale random processes in neighbouring disc annuli give rise by chance to a coherent large-scale magnetic field. This occurs on much longer timescales, and causes a bright large-amplitude flare as a wide range of disc radii evolve in a coherent fashion. Most of the time, dynamo action instead produces small-amplitude flickering. We reproduce power spectra similar to those observed, including a 1/f power spectrum below a break frequency given by the magnetic alignment timescale at the inner disc edge. However the relation between the black hole mass and the value of the break frequency is less straightforward than often assumed in the literature. The effect of an outer disc edge is to flatten the spectrum below the magnetic alignment frequency there. We also find a correlation between the variability amplitude and luminosity, similar to that found in some AGN.



قيم البحث

اقرأ أيضاً

We investigate the effect of black hole spin on warped or misaligned accretion discs - in particular i) whether or not the inner disc edge aligns with the black hole spin and ii) whether the disc can maintain a smooth transition between an aligned in ner disc and a misaligned outer disc, known as the Bardeen-Petterson effect. We employ high resolution 3D smoothed particle hydrodynamics simulations of $alpha$-discs subject to Lense-Thirring precession, focussing on the bending wave regime where the disc viscosity is smaller than the aspect ratio $alpha lesssim H/R$. We first address the controversy in the literature regarding possible steady-state oscillations of the tilt close to the black hole. We successfully recover such oscillations in 3D at both small and moderate inclinations ($lesssim 15^{circ}$), provided both Lense-Thirring and Einstein precession are present, sufficient resolution is employed, and provided the disc is not so thick so as to simply accrete misaligned. Second, we find that discs inclined by more than a few degrees in general steepen and break rather than maintain a smooth transition, again in contrast to previous findings, but only once the disc scale height is adequately resolved. Finally, we find that when the disc plane is misaligned to the black hole spin by a large angle, the disc tears into discrete rings which precess effectively independently and cause rapid accretion, consistent with previous findings in the diffusive regime ($alpha gtrsim H/R$). Thus misalignment between the disc and the spin axis of the black hole provides a robust mechanism for growing black holes quickly, regardless of whether the disc is thick or thin.
We want to test if self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow, from the accretion disk, is not a free parameter, but is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Different MHD solutions were generated for different values of (a) the disk aspect ratio ($varepsilon$) and (b) the ejection efficiency ($p$). We generated two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. The cold MHD solutions are found to be inadequate to account for winds due to their low ejection efficiency. The warm solutions can have sufficiently high values of $p (gtrsim 0.1)$ which is required to explain the observed physical quantities in the wind. The heating (required at the disk surface for the warm solutions) could be due to the illumination which would be more efficient in the Soft state. We found that in the Hard state a range of ionisation parameter is thermodynamically unstable, which makes it impossible to have any wind at all, in the Hard state. Our results would suggest that a thermo-magnetic process is required to explain winds in BHBs.
The majority of gravitational wave (GW) events detected so far by LIGO/Virgo originate from binary black hole (BBH) mergers. Among the different binary evolution paths, the merger of BBHs in accretion discs of active galactic nuclei (AGNs) is a possi ble source of GW detections. We consider an idealised analytical model of the orbital evolution of BBHs embedded in an AGN accretion disc. In this framework, the disc-binary interaction increases the orbital eccentricity and decreases the orbital separation, driving the BBH into a regime where GW emission eventually leads to coalescence. We compute the resulting GW merger rate density from this channel based on a weighted average of the merger timescales of a population of BBHs radially distributed within the AGN accretion disc. The predicted merger rates broadly lie in the range $mathcal{R} sim (0.002 - 18) , mathrm{Gpc^{-3} yr^{-1}}$. We analyse the dependence of the merger rate density on both the accretion disc and binary orbital parameters, emphasising the important role of the orbital eccentricity. We discuss the astrophysical implications of this particular BBH-in-AGN formation channel in the broader context of binary evolution scenarios.
224 - Sean A. Hartnoll 2001
We calculate the iron line profiles from accretion discs with spiral velocity structures around Schwarzschild black holes. We find that quasi-periodic bumps appear in the the profiles, thereby providing a test for spiral wave patterns. This study is motivated by recent work showing that spiral density waves can result from MHD instabilities even in non-self-gravitating discs, and by improved spectral resolution of forthcoming X-ray missions.
This is the third paper in a series describing the spectroscopic properties of a sample of 39 AGN at $z sim 1.5$, selected to cover a large range in black hole mass ($M_{BH}$) and Eddington ratio ($L/L_{Edd}$). In this paper, we continue the analysis of the VLT/X-shooter observations of our sample with the addition of 9 new sources. We use an improved Bayesian procedure, which takes into account intrinsic reddening, and improved $M_{BH}$ estimates, to fit thin accretion disc (AD) models to the observed spectra and constrain the spin parameter ($a_*$) of the central black holes. We can fit 37 out of 39 AGN with the thin AD model, and for those with satisfactory fits, we obtain constraints on the spin parameter of the BHs, with the constraints becoming generally less well defined with decreasing BH mass. Our spin parameter estimates range from $sim$$-$0.6 to maximum spin for our sample, and our results are consistent with the spin-up scenario of BH spin evolution. We also discuss how the results of our analysis vary with the inclusion of non-simultaneous GALEX photometry in our thin AD fitting. Simultaneous spectra covering the rest-frame optical through far-UV are necessary to definitively test the thin AD theory and obtain the best constraints on the spin parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا