ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Bardeen-Petterson Effect in black hole accretion discs

83   0   0.0 ( 0 )
 نشر من قبل Rebecca Nealon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of black hole spin on warped or misaligned accretion discs - in particular i) whether or not the inner disc edge aligns with the black hole spin and ii) whether the disc can maintain a smooth transition between an aligned inner disc and a misaligned outer disc, known as the Bardeen-Petterson effect. We employ high resolution 3D smoothed particle hydrodynamics simulations of $alpha$-discs subject to Lense-Thirring precession, focussing on the bending wave regime where the disc viscosity is smaller than the aspect ratio $alpha lesssim H/R$. We first address the controversy in the literature regarding possible steady-state oscillations of the tilt close to the black hole. We successfully recover such oscillations in 3D at both small and moderate inclinations ($lesssim 15^{circ}$), provided both Lense-Thirring and Einstein precession are present, sufficient resolution is employed, and provided the disc is not so thick so as to simply accrete misaligned. Second, we find that discs inclined by more than a few degrees in general steepen and break rather than maintain a smooth transition, again in contrast to previous findings, but only once the disc scale height is adequately resolved. Finally, we find that when the disc plane is misaligned to the black hole spin by a large angle, the disc tears into discrete rings which precess effectively independently and cause rapid accretion, consistent with previous findings in the diffusive regime ($alpha gtrsim H/R$). Thus misalignment between the disc and the spin axis of the black hole provides a robust mechanism for growing black holes quickly, regardless of whether the disc is thick or thin.

قيم البحث

اقرأ أيضاً

Luminous active galactic nuclei (AGN) and X-Ray binaries (XRBs) tend to be surrounded by geometrically thin, radiatively cooled accretion discs. According to both theory and observations, these are -- in many cases -- highly misaligned with the black hole spin axis. In this work we present the first general relativistic magnetohydrodynamic simulations of very thin ($h/r sim 0.015-0.05$) accretion discs around rapidly spinning ($a sim 0.9$) black holes and tilted by 45-65 degrees. We show that the inner regions of the discs with $h/r lesssim 0.03$ align with the black hole equator, though at smaller radii than predicted by theoretical work. The inner aligned and outer misaligned disc regions are separated by a sharp break in tilt angle accompanied by a sharp drop in density. We find that frame-dragging by the spinning black hole overpowers the disc viscosity, which is self-consistently produced by magnetized turbulence, tearing the disc apart and forming a rapidly precessing inner sub-disc surrounded by a slowly precessing outer sub-disc. We find that at all tilt values the system produces a pair of relativistic jets. At small distances the jets precess rapidly together with the inner sub-disc, whereas at large distances they partially align with the outer sub-disc and precess more slowly. If the tearing radius can be modeled accurately in future work, emission model independent measurements of black hole spin based on precession-driven quasi-periodic oscillations may become possible.
At the final stages of a supermassive black hole coalescence, the emission of gravitational waves will efficiently remove energy and angular momentum from the binary orbit, allowing the separation between the compact objects to shrink. In the scenari o where a circumprimary disc is present, a squeezing phase will develop, in which the tidal interaction between the disc and the secondary black hole could push the gas inwards, enhancing the accretion rate on to the primary and producing what is known as an electromagnetic precursor. In this context, using 3D hydrodynamic simulations, we study how an adiabatic circumprimary accretion disc responds to the varying gravitational potential as the secondary falls onto the more massive object. We included a cooling prescription controlled by the parameter beta = Omega t_{cool}, which will determine how strong the final accretion rate is: a hotter disc is thicker, and the tidal interaction is suppressed for the gas outside the binary plane. Our main results are that for scenarios where the gas cannot cool fast enough (beta>30) the disc becomes thick and renders the system invisible, while for beta<10 the strong cooling blocks any leakage on to the secondarys orbit, allowing an enhancement in the accretion rate two orders of magnitude stronger than the average through the rest of the simulation.
87 - A.R. King 2003
Observations of accreting systems often show significant variability (10-20 percent of accretion luminosity) on timescales much longer than expected for the disc regions releasing most of the luminosity. We propose an explicit physical model for disc variability, consistent with Lyubarskiis (1997) general scheme for solving this problem. We suggest that local dynamo processes can affect the evolution of an accretion disc by driving angular momentum loss in the form of an outflow (a wind or jet). We model the dynamo as a small-scale stochastic phenomenon, operating on roughly the local dynamical timescale. We argue that large-scale outflow can only occur when the small-scale random processes in neighbouring disc annuli give rise by chance to a coherent large-scale magnetic field. This occurs on much longer timescales, and causes a bright large-amplitude flare as a wide range of disc radii evolve in a coherent fashion. Most of the time, dynamo action instead produces small-amplitude flickering. We reproduce power spectra similar to those observed, including a 1/f power spectrum below a break frequency given by the magnetic alignment timescale at the inner disc edge. However the relation between the black hole mass and the value of the break frequency is less straightforward than often assumed in the literature. The effect of an outer disc edge is to flatten the spectrum below the magnetic alignment frequency there. We also find a correlation between the variability amplitude and luminosity, similar to that found in some AGN.
We want to test if self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow, from the accretion disk, is not a free parameter, but is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Different MHD solutions were generated for different values of (a) the disk aspect ratio ($varepsilon$) and (b) the ejection efficiency ($p$). We generated two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. The cold MHD solutions are found to be inadequate to account for winds due to their low ejection efficiency. The warm solutions can have sufficiently high values of $p (gtrsim 0.1)$ which is required to explain the observed physical quantities in the wind. The heating (required at the disk surface for the warm solutions) could be due to the illumination which would be more efficient in the Soft state. We found that in the Hard state a range of ionisation parameter is thermodynamically unstable, which makes it impossible to have any wind at all, in the Hard state. Our results would suggest that a thermo-magnetic process is required to explain winds in BHBs.
We discuss two important instability mechanisms that may lead to the limit-cycle oscillations of the luminosity of the accretion disks around compact objects: ionization instability and radiation-pressure instability. Ionization instability is well e stablished as a mechanism of X-ray novae eruptions in black hole binary systems but its applicability to AGN is still problematic. Radiation pressure theory has still very weak observational background in any of these sources. In the present paper we attempt to confront the parameter space of these instabilities with the observational data. At the basis of this simple survey of sources properties we argue that the radiation pressure instability is likely to be present in several Galactic sources with the Eddington ratios above 0.15, and in AGN with the Eddington ratio above 0.025. Our results favor the parameterization of the viscosity through the geometrical mean of the radiation and gas pressure both in Galactic sources and AGN. More examples of the quasi-regular outbursts in the timescales of 100 seconds in Galactic sources, and hundreds of years in AGN are needed to formulate firm conclusions. We also show that the disk sizes in the X-ray novae are consistent with the ionization instability. This instability may also considerably influence the lifetime cycle and overall complexity in the supermassive black hole environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا