ترغب بنشر مسار تعليمي؟ اضغط هنا

Binary black hole mergers in AGN accretion discs: gravitational wave rate density estimates

138   0   0.0 ( 0 )
 نشر من قبل Matthias Gr\\\"obner
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The majority of gravitational wave (GW) events detected so far by LIGO/Virgo originate from binary black hole (BBH) mergers. Among the different binary evolution paths, the merger of BBHs in accretion discs of active galactic nuclei (AGNs) is a possible source of GW detections. We consider an idealised analytical model of the orbital evolution of BBHs embedded in an AGN accretion disc. In this framework, the disc-binary interaction increases the orbital eccentricity and decreases the orbital separation, driving the BBH into a regime where GW emission eventually leads to coalescence. We compute the resulting GW merger rate density from this channel based on a weighted average of the merger timescales of a population of BBHs radially distributed within the AGN accretion disc. The predicted merger rates broadly lie in the range $mathcal{R} sim (0.002 - 18) , mathrm{Gpc^{-3} yr^{-1}}$. We analyse the dependence of the merger rate density on both the accretion disc and binary orbital parameters, emphasising the important role of the orbital eccentricity. We discuss the astrophysical implications of this particular BBH-in-AGN formation channel in the broader context of binary evolution scenarios.

قيم البحث

اقرأ أيضاً

209 - Marc Favata 2009
Some astrophysical sources of gravitational waves can produce a memory effect, which causes a permanent displacement of the test masses in a freely falling gravitational-wave detector. The Christodoulou memory is a particularly interesting nonlinear form of memory that arises from the gravitational-wave stress-energy tensors contribution to the distant gravitational-wave field. This nonlinear memory contributes a nonoscillatory component to the gravitational-wave signal at leading (Newtonian-quadrupole) order in the waveform amplitude. Previous computations of the memory and its detectability considered only the inspiral phase of binary black hole coalescence. Using an effective-one-body (EOB) approach calibrated to numerical relativity simulations, as well as a simple fully analytic model, the Christodoulou memory is computed for the inspiral, merger, and ringdown. The memory will be very difficult to detect with ground-based interferometers, but is likely to be observable in supermassive black hole mergers with LISA out to a redshift of two. Detection of the nonlinear memory could serve as an experimental test of the ability of gravity to gravitate.
We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucle us with spherical and disk components hosting a super-massive black hole (SMBH). We determine the total number of encounters $N_{rm GW}$ needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disk components. Using a Monte Carlo approach, we refine our calculations for $N_{rm GW}$ to include gravitational wave emission between scattering events. For astrophysically plausible models we find that typically $N_{rm GW} lesssim$ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low velocity dispersions and no significant Keplerian component; and (2) migration traps in disks around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disk. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because disks enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.
[Abridged] We introduce an improved version of the Eccentric, Non-spinning, Inspiral-Gaussian-process Merger Approximant (ENIGMA) waveform model. We find that this ready-to-use model can: (i) produce physically consistent signals when sampling over 1 M samples chosen over the $m_{{1,,2}}in[5M_{odot},,50M_{odot}]$ parameter space, and the entire range of binary inclination angles; (ii) produce waveforms within 0.04 seconds from an initial gravitational wave frequency $f_{textrm{GW}} =15,textrm{Hz}$ and at a sample rate of 8192 Hz; and (iii) reproduce the physics of quasi-circular mergers. We utilize ENIGMA to compute the expected signal-to-noise ratio (SNR) distributions of eccentric binary black hole mergers assuming the existence of second and third generation gravitational wave detector networks that include the twin LIGO detectors, Virgo, KAGRA, LIGO-India, a LIGO-type detector in Australia, Cosmic Explorer, and the Einstein Telescope. In the context of advanced LIGO-type detectors, we find that the SNR of eccentric mergers is always larger than quasi-circular mergers for systems with $e_0leq0.4$ at $f_{textrm{GW}} =10,textrm{Hz}$, even if the timespan of eccentric signals is just a third of quasi-circular systems with identical total mass and mass-ratio. For Cosmic Explorer-type detector networks, we find that eccentric mergers have similar SNRs than quasi-circular systems for $e_0leq0.3$ at $f_{textrm{GW}} =10,textrm{Hz}$. Systems with $e_0sim0.5$ at $f_{textrm{GW}} =10,textrm{Hz}$ have SNRs that range between 50%-90% of the SNR produced by quasi-circular mergers, even if these eccentric signals are just between a third to a tenth the length of quasi-circular systems. For Einstein Telescope-type detectors, we find that eccentric mergers have similar SNRs than quasi-circular systems for $e_0leq0.4$ at $f_{textrm{GW}} =5,textrm{Hz}$.
Since gravitational and electromagnetic waves from a compact binary coalescence carry independent information about the source, the joint observation is important for understanding the physical mechanisms of the emissions. Rapid detection and source localization of a gravitational wave signal are crucial for the joint observation to be successful. For a signal with a high signal-to-noise ratio, it is even possible to detect it before the merger, which is called early warning. In this letter, we estimate the performances of the early warning for neutron-star black-hole binaries, considering the precession effect of a binary orbit, with the near-future detectors such as A+, AdV+, KAGRA+, and Voyager. We find that a gravitational wave source can be localized in $100 ,mathrm{deg^2}$ on the sky before $sim 10$--$40 ,mathrm{s}$ of time to merger once per year.
139 - Maria Okounkova 2020
Recently, it has been shown that with the inclusion of overtones, the post-merger gravitational waveform at infinity of a binary black hole system is well-modelled using pure linear theory. However, given that a binary black hole merger is expected t o be highly non-linear, where do these non-linearities, which do not make it out to infinity, go? We visualize quantities measuring non-linearity in the strong-field region of a numerical relativity binary black hole merger in order to begin to answer this question.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا