ﻻ يوجد ملخص باللغة العربية
This paper presents the catalogue and the method of determination of averaged quadratic effective magnetic fields B_e for 596 main sequence and giant stars. the catalogue is based on measurements of the stellar effective (or mean longitudinal) magnetic field strengths B_e, which were compiled from the existing literature. We analysed the properties of 352 chemically peculiar A and B stars in the catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, and all ApSr type stars. We have found, that the number distribution of all chemically peculiar (CP) stars vs. averaged magnetic field strength is described by a decreasing exponential function. Relations of this type hold also for stars of all the analysed subclasses of chemical peculiarity. The exponential form of the above distribution function can break down below about 100 Gs, the latter value representing approximately the resolution of our analysis for A type stars.
In this paper we present a new catalogue of Chemically Peculiar (CP) stars obtained by compiling publications in which abundances of metals are provided. Our catalogue includes 428 stars for which the data were obtained through spectroscopic observat
The physics of magnetic hot stars and how a large-scale magnetic field affects their interior properties is largely unknown. Few studies have combined high-quality observations and modelling of magnetic pulsating stars, known as magneto-asteroseismol
About 5% of upper main sequence stars are permeated by a strong magnetic field, the origin of which is still matter of debate. With this work we provide observational material to study how magnetic fields change with the evolution of stars on the m
We report the results of an observational study aimed at searching for magnetic pulsating hot stars suitable for magneto-asteroseismology. A sample of sixteen chemically peculiar stars was selected and analysed using both high-resolution spectropolar
Magnetic chemically peculiar (mCP) stars are important to astrophysics because their complex atmospheres lend themselves perfectly to the investigation of the interplay between such diverse phenomena as atomic diffusion, magnetic fields, and stellar