ترغب بنشر مسار تعليمي؟ اضغط هنا

New catalogue of Chemically Peculiar stars, and Statistical Analysis

89   0   0.0 ( 0 )
 نشر من قبل Satenik Ghazaryan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present a new catalogue of Chemically Peculiar (CP) stars obtained by compiling publications in which abundances of metals are provided. Our catalogue includes 428 stars for which the data were obtained through spectroscopic observations. Most of them (416) are AmFm, HgMn and ApBp stars. We have used this compilation to proceed to a statistical overview of the abundance anomalies versus the physical parameters of the stars. The Spearmans rank correlation test has been applied, and a significant number of correlations of abundance peculiarities with respect to effective temperature, surface gravity and rotation velocity have been found. Four interesting cases are discussed in details: the Mn peculiarities in HgMn stars, the Ca correlation with respect to effective temperature in AmFm stars, the case of helium and iron in ApBp stars. Furthermore, we checked for ApBp stars using Anderson-Darling test wether the belonging to a multiple system is a determinant parameter or not for abundance peculiarities.

قيم البحث

اقرأ أيضاً

This talk is devoted to the statistical analysis of the new catalogue of Chemically Peculiar stars compiled from papers, where chemical abundances of those stars were given. The catalogue contains chemical abundances and physical parameters of 428 st ars based on high-resolution spectroscopy data. Spearmans rank correlation test was applied for 416 CP (108 HgMn, 188 ApBp and 120 AmFm) stars and the correlation between chemical abundances and different physical parameters (effective temperature, surface gravity and rotational velocity) was checked. From dozens interesting cases we secluded four cases: the Mn peculiarities in HgMn stars, the Ca correlation with respect to effective temperature in AmFm stars, the case of helium and iron in ApBp stars. We applied also Anderson-Darling (AD) test on ApBp stars to check if multiplicity is a determinant parameter for abundance peculiarities.
Magnetic chemically peculiar (mCP) stars are important to astrophysics because their complex atmospheres lend themselves perfectly to the investigation of the interplay between such diverse phenomena as atomic diffusion, magnetic fields, and stellar rotation. The present work is aimed at identifying new mCP stars using spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Suitable candidates were selected by searching LAMOST DR4 spectra for the presence of the characteristic 5200A flux depression. Spectral classification was carried out with a modified version of the MKCLASS code and the accuracy of the classifications was estimated by comparison with results from manual classification and the literature. Using parallax data and photometry from Gaia DR2, we investigated the space distribution of our sample stars and their properties in the colour-magnitude diagram. Our final sample consists of 1002 mCP stars, most of which are new discoveries (only 59 previously known). Traditional mCP star peculiarities have been identified in all but 36 stars, highlighting the efficiency of the codes peculiarity identification capabilities. The derived temperature and peculiarity types are in agreement with manually derived classifications and the literature. Our sample stars are between 100 Myr and 1 Gyr old, with the majority having masses between 2M(Sun) and 3M(Sun). Our results could be considered as strong evidence for an inhomogeneous age distribution among low-mass (M < 3M(Sun)) mCP stars. We identified several astrophysically interesting objects: two mCP stars have distances and kinematical properties in agreement with halo stars; an eclipsing binary system hosting an mCP star component; and an SB2 system likely comprising of an mCP star and a supergiant component.
The number of known variable stars has increased by several magnitudes over the last decade, and automated classification routines are becoming increasingly important to cope with this development. Here we show that the upside-down CBH variables, whi ch were proposed as a potentially new class of variable stars by Heinze et al. (2018) in the ATLAS First Catalogue of Variable Stars, are, at least to a high percentage, made up of alpha2 Canum Venaticorum (ACV) variables - that is, photometrically variable magnetic chemically peculiar (CP2/He-peculiar) stars - with distinct double-wave light curves. Using suitable selection criteria, we identified 264 candidate ACV variables in the ATLAS variable star catalogue. 62 of these objects were spectroscopically confirmed with spectra from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (all new discoveries except for nine stars) and classified on the MK system. The other 202 stars are here presented as ACV star candidates that require spectroscopic confirmation. The vast majority of our sample of stars are main-sequence objects. Derived masses range from 1.4M(Sun) to 5M(Sun), with half our sample stars being situated in the range from 2 M(Sun) to 2.4 M(Sun), in good agreement with the spectral classifications. Most stars belong to the thin or thick disk; four objects, however, classify as members of the halo population. With a peak magnitude distribution at around 14th magnitude, the here presented stars are situated at the faint end of the known Galactic mCP star population. Our study highlights the need to consider rare variability classes, like ACV variables, in automated classification routines.
247 - S. Joshi 2012
In this paper we present a high-resolution spectroscopic analysis of the chemically peculiar star HD207561. During a survey programme to search for new roAp stars in the Northern hemisphere, Joshi et al. (2006) observed significant photometric variab ility on two consecutive nights in the year 2000. The amplitude spectra of the light curves obtained on these two nights showed oscillations with a frequency of 2.79 mHz [P~6-min]. However, subsequent follow-up observations could not confirm any rapid variability. In order to determine the spectroscopic nature of HD207561, high-resolution spectroscopic and spectro-polarimetric observations were carried out. A reasonable fit of the calculated Hbeta line profile to the observed one yields the effective temperature (Teff) and surface gravity (log g) as 7300 K and 3.7 dex, respectively. The derived projected rotational velocity (vsin i) for HD207561 is 74 km/sec indicative of a relatively fast rotator. The position of HD207561 in the H-R diagram implies that this is slightly evolved from the main-sequence and located well within the delta-Scuti instability strip. The abundance analysis indicates the star has slight under-abundances of Ca and Sc and mild over-abundances of iron-peak elements. The spectro-polarimetric study of HD207561 shows that the effective magnetic field is within the observational error of 100 gauss (G). The spectroscopic analysis revealed that the star has most of the characteristics similar to an Am star, rather than an Ap star, and that it lies in the delta-Scuti instability strip; hence roAp pulsations are not expected in HD207561, but low-overtone modes might be excited.
This paper presents the catalogue and the method of determination of averaged quadratic effective magnetic fields B_e for 596 main sequence and giant stars. the catalogue is based on measurements of the stellar effective (or mean longitudinal) magnet ic field strengths B_e, which were compiled from the existing literature. We analysed the properties of 352 chemically peculiar A and B stars in the catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, and all ApSr type stars. We have found, that the number distribution of all chemically peculiar (CP) stars vs. averaged magnetic field strength is described by a decreasing exponential function. Relations of this type hold also for stars of all the analysed subclasses of chemical peculiarity. The exponential form of the above distribution function can break down below about 100 Gs, the latter value representing approximately the resolution of our analysis for A type stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا