ﻻ يوجد ملخص باللغة العربية
The physics of magnetic hot stars and how a large-scale magnetic field affects their interior properties is largely unknown. Few studies have combined high-quality observations and modelling of magnetic pulsating stars, known as magneto-asteroseismology, primarily because of the dearth of detected pulsations in stars with a confirmed and well-characterised large-scale magnetic field. We aim to characterise observational signatures of rotation and pulsation in chemically peculiar candidate magnetic stars using photometry from the K2 space mission. Thus, we identify the best candidate targets for ground-based, optical spectropolarimetric follow-up observations to confirm the presence of a large-scale magnetic field. We employed customised reduction and detrending tools to process the K2 photometry into optimised light curves for a variability analysis. We searched for the periodic photometric signatures of rotational modulation caused by surface abundance inhomogeneities in 56 chemically peculiar A and B stars. Furthermore, we searched for intrinsic variability caused by pulsations (coherent or otherwise) in the amplitude spectra of these stars. The rotation periods of 38 chemically peculiar stars are determined, 16 of which are the first determination of the rotation period in the literature. We confirm the discovery of high-overtone roAp pulsation modes in HD 177765 and find an additional 3 Ap and Bp stars that show evidence of high-overtone pressure modes found in roAp stars in the form of possible Nyquist alias frequencies in their amplitude spectra. Furthermore, we find 6 chemically peculiar stars that show evidence of intrinsic variability caused by gravity or pressure pulsation modes. The discovery of pulsations in a non-negligible fraction of chemically peculiar stars make these stars high-priority targets for spectropolarimetric campaigns.
We report the results of an observational study aimed at searching for magnetic pulsating hot stars suitable for magneto-asteroseismology. A sample of sixteen chemically peculiar stars was selected and analysed using both high-resolution spectropolar
Light curves and periodograms of 160 B stars observed by the TESS space mission and 29 main-sequence B stars from Kepler and K2 were used to classify the variability type. There are 114 main-sequence B stars in the TESS sample, of which 45 are classi
We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f_2 has an amp
This paper presents the catalogue and the method of determination of averaged quadratic effective magnetic fields B_e for 596 main sequence and giant stars. the catalogue is based on measurements of the stellar effective (or mean longitudinal) magnet
We present an 80-d long uninterrupted high-cadence K2 light curve of the B1Iab supergiant rho Leo (HD 91316), deduced with the method of halo photometry. This light curve reveals a dominant frequency of $f_{rmrot}=0.0373$d$^{-1}$ and its harmonics. T