ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic Calculations and Spectral Models of X-ray Absorption and Emission Features From Astrophysical Photoionized Plasmas

415   0   0.0 ( 0 )
 نشر من قبل Ali Kinkhabwala
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Kinkhabwala




اسأل ChatGPT حول البحث

We present a detailed model of the discrete X-ray spectroscopic features expected from steady-state, low-density photoionized plasmas. We apply the Flexible Atomic Code (FAC) to calculate all of the necessary atomic data for the full range of ions relevant for the X-ray regime. These calculations have been incorporated into a simple model of a cone of ions irradiated by a point source located at its tip (now available as the XSPEC model PHOTOION). For each ionic species in the cone, photoionization is balanced by recombination and ensuing radiative cascades, and photoexcitation of resonance transitions is balanced by radiative decay. This simple model is useful for diagnosing X-ray emission mechanisms, determining photoionization/photoexcitation/recombination rates, fitting temperatures and ionic emission measures, and probing geometrical properties (covering factor/column densities/radial filling factor/velocity distributions) of absorbing/reemitting regions in photoionized plasmas. Such plasmas have already been observed in diverse astrophysical X-ray sources, including active galactic nuclei, X-ray binaries, cataclysmic variables, and stellar winds of early-type stars, and may also provide a significant contribution to the X-ray spectra of gamma-ray-burst afterglows and the intergalactic medium.



قيم البحث

اقرأ أيضاً

Our Swift monitoring program triggered two joint XMM-Newton, NuSTAR and HST observations on 11 and 21 December 2016 targeting NGC 3783, as its soft X-ray continuum was heavily obscured. Consequently, emission features, including the O VII radiative r ecombination continuum, stand out above the diminished continuum. We focus on the photoionized emission features in the December 2016 RGS spectra and compare them to the time-averaged RGS spectrum obtained in 2000--2001 when the continuum was unobscured. A two-phase photoionized plasma is required to account for the narrow emission features. These narrow emission features are weakly varying between 2000--2001 and December 2016. We also find a statistically significant broad emission component in the time-averaged RGS spectrum in 2000--2001. This broad emission component is significantly weaker in December 2016, suggesting that the obscurer is farther away than the X-ray broad-line region. In addition, by analyzing the archival high-resolution X-ray spectra, we find that nine photoionized absorption components with different ionization parameters and kinematics are required for the warm absorber in X-rays.
146 - G. J. M. Luna 2010
We present the first results from a long (496 ks) Chandra High Energy Transmission Grating observation of the intermediate polar EX Hydrae. In addition to the narrow emission lines from the cooling post-shock gas, for the first time we have detected a broad component in some of the X-ray emission lines, namely O VIII 18.97, Mg XII 8.42, Si XIV 6.18, and Fe XVII 16.78. The broad and narrow components have widths of ~ 1600 km s^-1 and ~ 150 km s^-1, respectively. We propose a scenario where the broad component is formed in the pre-shock accretion flow, photoionized by radiation from the post-shock flow. Because the photoionized region has to be close to the radiation source in order to produce strong photoionized emission lines from ions like O VIII, Fe XVII, Mg XII, and Si XIV, our photoionization model constrains the height of the standing shock above the white dwarf surface. Thus, the X-ray spectrum from EX Hya manifests features of both magnetic and non-magnetic cataclysmic variables.
78 - S White , R Irwin , R Warwick 2018
In this paper we report the experimental implementation of a theoretically-proposed technique for creating a photoionized plasma in the laboratory using X-ray line radiation. Using a Sn laser-plasma to irradiate an Ar gas target, the photoionization parameter, xi = 4{pi}F/Ne, reached values of order 50 erg cm/s, where F is the radiation flux in erg/cm2/s. The significance of this is that this technique allows us to mimic effective spectral radiation temperatures in excess of 1 keV. We show that our plasma starts to be collisionally dominated before the peak of the X-ray drive. However, the technique is extendable to higher energy laser systems to create plasmas with parameters relevant to benchmarking codes used to model astrophysical objects.
A review of a renewed effort to recalculate astrophysical opacities using the R-Matrix method is presented. The computational methods and new extensions are described. Resulting enhancements found in test calculations under stellar interior condition s compared to the Opacity Project could potentially lead to the resolution of the solar abundances problem, as well as discrepancies between recent experimental measurements at the Sandia Z-pinch inertial confinement fusion device and theoretical opacity models. Outstanding issues also discussed are: (i) accuracy, convergence, and completeness of atomic calculations, (ii) improvements in the Equation-of-State of high-temperature-density plasmas, and (iii) redistribution of resonant oscillator strength in the bound-free continuum, and (iv) plasma broadening of auotionizing resonances.
82 - Shin Watanabe 2006
We present results from quantitative modeling and spectral analysis of the high mass X-ray binary Vela X-1 obtained with the Chandra HETGS. The spectra exhibit emission lines from H-like and He-like ions driven by photoionization, as well as fluoresc ent emission lines from several elements in lower charge states. In order to interpret and make full use of the high-quality data, we have developed a simulator, which calculates the ionization and thermal structure of a stellar wind photoionized by an X-ray source, and performs Monte Carlo simulations of X-ray photons propagating through the wind. The emergent spectra are then computed as a function of the viewing angle accurately accounting for photon transport in three dimensions including dynamics. From comparisons of the observed spectra with the simulation results, we are able to find the ionization structure and the geometrical distribution of material in Vela X-1 that can reproduce the observed spectral line intensities and continuum shapes at different orbital phases remarkably well. It is found that a large fraction of X-ray emission lines from highly ionized ions are formed in the region between the neutron star and the companion star. We also find that the fluorescent X-ray lines must be produced in at least three distinct regions --(1)the extended stellar wind, (2)reflection off the stellar photosphere, and (3)in a distribution of dense material partially covering and possibly trailing the neutron star, which may be associated with an accretion wake. Finally, from detailed analysis of the emission lines, we demonstrate that the stellar wind is affected by X-ray photoionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا