ﻻ يوجد ملخص باللغة العربية
In this paper we report the experimental implementation of a theoretically-proposed technique for creating a photoionized plasma in the laboratory using X-ray line radiation. Using a Sn laser-plasma to irradiate an Ar gas target, the photoionization parameter, xi = 4{pi}F/Ne, reached values of order 50 erg cm/s, where F is the radiation flux in erg/cm2/s. The significance of this is that this technique allows us to mimic effective spectral radiation temperatures in excess of 1 keV. We show that our plasma starts to be collisionally dominated before the peak of the X-ray drive. However, the technique is extendable to higher energy laser systems to create plasmas with parameters relevant to benchmarking codes used to model astrophysical objects.
All the observations available in the Chandra and XMM-Newton archives have been used to investigate the X-ray spectral properties of 3C 33. In this paper is presented a complete X-ray analysis of the nuclear emission of this narrow line radio galaxy.
We present the first results from a long (496 ks) Chandra High Energy Transmission Grating observation of the intermediate polar EX Hydrae. In addition to the narrow emission lines from the cooling post-shock gas, for the first time we have detected
Our Swift monitoring program triggered two joint XMM-Newton, NuSTAR and HST observations on 11 and 21 December 2016 targeting NGC 3783, as its soft X-ray continuum was heavily obscured. Consequently, emission features, including the O VII radiative r
We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and super-orbital phas
The reported observations of an unidentified X-ray line feature at $sim$3.5 keV have driven a lively discussion about its possible dark matter origin. Motivated by this, we have measured the emph{K}-shell X-ray spectra of highly ionized bare sulfur i