ترغب بنشر مسار تعليمي؟ اضغط هنا

Recalculation of Astrophysical Opacities: Overview, Methodology and Atomic Calculations

111   0   0.0 ( 0 )
 نشر من قبل Anil K. Pradhan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A review of a renewed effort to recalculate astrophysical opacities using the R-Matrix method is presented. The computational methods and new extensions are described. Resulting enhancements found in test calculations under stellar interior conditions compared to the Opacity Project could potentially lead to the resolution of the solar abundances problem, as well as discrepancies between recent experimental measurements at the Sandia Z-pinch inertial confinement fusion device and theoretical opacity models. Outstanding issues also discussed are: (i) accuracy, convergence, and completeness of atomic calculations, (ii) improvements in the Equation-of-State of high-temperature-density plasmas, and (iii) redistribution of resonant oscillator strength in the bound-free continuum, and (iv) plasma broadening of auotionizing resonances.



قيم البحث

اقرأ أيضاً

Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. We report the cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that ~2% of our line list and Vienna Atomic Line Database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy. All cross-matched atomic data and duplicate transitions are available to download at brass.sdf.org.
Availability of reliable atomic and molecular opacity tables is essential in a wide variety of astronomical modeling: the solar and stellar interiors, stellar and planetary atmospheres, stellar evolution, pulsating stars, and protoplanetary disks, to name a few. With the advancement of powerful research techniques such as helio-seismology and asteroseismology, solar neutrino-flux measurements, exoplanet survey satellites, three-dimensional hydrodynamic atmospheric simulations (including non-LTE and granulation effects), high-performance computing of atomic and molecular data, and innovative plasma experiments the accuracy and completeness of opacity tables is being taken to an unprecedented level. The goal of the second Workshop on Astrophysical Opacities was to gather opacity data producers and consumers from both the atomic and molecular sectors to contribute to solving outstanding problems and to develop more effective and integrated interfaces. In this review we attempt to summa- rize the discussion at the workshop and propose future directions for opacity research.
71 - H. Hartman 2017
This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions from 3d8 4d levels of astrophysical interest in singly ionized nickel. Radiative lifetimes of seven high-lying levels of even parity in Ni II ( 98400 -100600 cm-1) have been measured using the time-resolved laser-induced fluorescence method. Two-step photon excitation of ions produced by laser ablation has been utilized to populate the levels. Theoretical calculations of the radiative lifetimes of the measured levels and transition probabilities from these levels are reported. The calculations have been performed using a pseudo-relativistic Hartree-Fock method, taking into account core polarization effects. A new set of transition probabilities and oscillator strengths has been deduced for 477 Ni II transitions of astrophysical interest in the spectral range 194 - 520 nm depopulating even parity 3d8 4d levels. The new calculated gf-values are, on the average, about 20 % higher than a previous calculation by Kurucz (http://kurucz.harvard.edu) and yield lifetimes within 5 % of the experimental values.
The present debate on the reliability of astrophysical opacities has reached a new climax with the recent measurements of Fe opacities on the Z-machine at the Sandia National Laboratory citep{Bailey2015}. To understand the differences between theoret ical results, on the one hand, and experiments on the other, as well as the differences among the various theoretical results, detailed comparisons are needed. Many ingredients are involved in the calculation of opacities; deconstructing the whole process and comparing the differences at each step are necessary to quantify their importance and impact on the final results. We present here such a comparison using the two main approaches to calculate the required atomic data, the $R$-Matrix and distorted-wave methods, as well as sets of configurations and coupling schemes to quantify the effects on the opacities for the $Fe XVII$ and $Ni XIV$ ions.
113 - Sultana N. Nahar 2011
A comprehensive study of high-accuracy photoionization cross sections is carried out using the relativistic Breit-Pauli R-matrix (BPRM) method for (hnu + Fe XVII --> Fe XVIII + e). Owing to its importance in high-temperature plasmas the calculations cover a large energy range, particularly the myriad photoexciation-of-core (PEC) resonances including the n = 3 levels not heretofore considered. The calculations employ a close coupling wave function expansion of 60 levels of the core ion Fe XVIII ranging over a wide energy range of nearly 900 eV between the n = 2 and n = 3 levels. Strong coupling effects due to dipole transition arrays 2p^5 --> 2p^4 (3s,3d) manifest themselves as large PEC resonances throughout this range, and enhance the effective photoionization cross sections orders of magnitude above the background. Comparisons with the erstwhile Opacity Project (OP) and other previous calculations shows that the currently available cross sections considerably underestimate the bound-free cross sections. A level-identification scheme is used for spectroscopic designation of the 454 bound fine structure levels of Fe XVII. Level-specific photoionization cross sections are computed for all levels. In addition, partial cross sections for leaving the core ion Fe XVII in the ground state are also obtained. These results should be relevant to modeling of astrophysical and laboratory plasma sources requiring (i) photoionization rates, (ii) extensive non-local-thermodynamic-equilibrium models, (iii) total unified electron-ion recombination rates including radiative and dielectronic recombination, and (iv) plasma opacities. We particularly examine PEC and non-PEC resonance strengths and emphasize their expanded role to incorporate inner-shell excitations for improved opacities, as shown by the computed monochromatic opacity of Fe XVII.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا