ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field evolution in galaxies interacting with the intracluster medium. 3D numerical simulations

215   0   0.0 ( 0 )
 نشر من قبل Gabriele Breuer
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A fully three-dimensional (3D) magnetohydrodynamical (MHD) model is applied to simulate the evolution of the large-scale magnetic field in cluster galaxies interacting with the intra-cluster medium (ICM). As the model input we use a time dependent gas velocity field resulting from 3D N-body sticky-particle simulations of a galaxy. The modeled clouds are affected by the ram pressure due to their rapid motion through the ICM in the central part of a cluster. Numerical simulations have shown that after the initial compression phase due to ram pressure a process of gas re-accretion onto the galactic disk takes place. We find that the gas re-accretion leads to an increase of the total magnetic energy without any dynamo action. The simulated magnetic fields are used to construct the model maps of high-frequency (Faraday rotation-free) polarized radio emission. We show that the evolution of the polarized intensity shows features that are characteristic for different evolutionary stages of an ICM-ISM interaction. The comparison of polarized radio continuum emission maps with our model permits to determine whether the galaxy is in the compression or in the re-accretion phase. It also provides an important constraint upon the dynamical modeling of an ICM-ISM interactions.

قيم البحث

اقرأ أيضاً

Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. We selected 16 systems of i nteracting galaxies and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15muG) as interaction advances, then it increases up to 2x, peaks at the nuclear coalescence (25muG), and decreases again, down to 5-6muG, for the post-merger remnants. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. The process of strong gravitational interactions can efficiently magnetize the mergers surroundings, having a similar magnetizing effect on intergalactic medium as supernova explosions or galactic winds. If interacting galaxies generate some ultra-high energy cosmic rays (UHECRs), the disk or magnetized outflows can deflect them (up to 23 degrees), and make an association of the observed UHECRs with the sites of their origin very uncertain.
Not much is currently known about how galaxy interactions affect an evolution of galactic magnetic fields. Here, for the first time, we explore a global evolution of magnetic fields with the advance of interaction process.
Using an N-body+SPH code we have performed numerical simulations to investigate the dynamical effects of an interaction between an initially barred galaxy and a small spherical companion. In the models described here the small companion passes throug h the disk of the larger galaxy perpendicular to its plane. The impact positions and times are varied with respect to the evolutionary phase of the bar and disc. The interactions produce expanding ring structures, offset bars, spokes, and other asymmetries in the stars and gas. They also affect the strength and pattern speed of the bar.
87 - C. Nutto , O. Steiner , M. Roth 2012
We investigate the interaction of magneto-acoustic waves with magnetic network elements with the aim of finding possible signatures of the magnetic shadow phenomenon in the vicinity of network elements. We carried out three-dimensional numerical simu lations of magneto-acoustic wave propagation in a model solar atmosphere that is threaded by a complexly structured magnetic field, resembling that of a typical magnetic network element and of internetwork regions. High-frequency waves of 10 mHz are excited at the bottom of the simulation domain. On their way through the upper convection zone and through the photosphere and the chromosphere they become perturbed, refracted, and converted into different mode types. We applied a standard Fourier analysis to produce oscillatory power-maps of the line-of-sight velocity. In the power maps of the upper photosphere and the lower chromosphere, we clearly see the magnetic shadow: a seam of suppressed power surrounding the magnetic network elements. We demonstrate that this shadow is linked to the mode conversion process and that power maps at these height levels show the signature of three different magneto-acoustic wave modes.
We demonstrate that conservation of global helicity plays only a minor role in determining the nature and consequences of magnetic reconnection in the solar atmosphere. First, we show that observations of the solar coronal magnetic field are in direc t conflict with Taylors theory. Next, we present results from three-dimensional MHD simulations of the shearing of bipolar and multi-polar coronal magnetic fields by photospheric footpoint motions, and discuss the implications of these results for Taylors theory and for models of solar activity. The key conclusion of this work is that significant magnetic reconnection occurs only at very specific locations and, hence, the Suns magnetic field cannot relax completely down to the minimum energy state predicted by conservation of global helicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا