ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of magnetic field in interacting galaxies

89   0   0.0 ( 0 )
 نشر من قبل Robert T. Drzazga
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Not much is currently known about how galaxy interactions affect an evolution of galactic magnetic fields. Here, for the first time, we explore a global evolution of magnetic fields with the advance of interaction process.

قيم البحث

اقرأ أيضاً

Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. We selected 16 systems of i nteracting galaxies and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15muG) as interaction advances, then it increases up to 2x, peaks at the nuclear coalescence (25muG), and decreases again, down to 5-6muG, for the post-merger remnants. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. The process of strong gravitational interactions can efficiently magnetize the mergers surroundings, having a similar magnetizing effect on intergalactic medium as supernova explosions or galactic winds. If interacting galaxies generate some ultra-high energy cosmic rays (UHECRs), the disk or magnetized outflows can deflect them (up to 23 degrees), and make an association of the observed UHECRs with the sites of their origin very uncertain.
A fully three-dimensional (3D) magnetohydrodynamical (MHD) model is applied to simulate the evolution of the large-scale magnetic field in cluster galaxies interacting with the intra-cluster medium (ICM). As the model input we use a time dependent ga s velocity field resulting from 3D N-body sticky-particle simulations of a galaxy. The modeled clouds are affected by the ram pressure due to their rapid motion through the ICM in the central part of a cluster. Numerical simulations have shown that after the initial compression phase due to ram pressure a process of gas re-accretion onto the galactic disk takes place. We find that the gas re-accretion leads to an increase of the total magnetic energy without any dynamo action. The simulated magnetic fields are used to construct the model maps of high-frequency (Faraday rotation-free) polarized radio emission. We show that the evolution of the polarized intensity shows features that are characteristic for different evolutionary stages of an ICM-ISM interaction. The comparison of polarized radio continuum emission maps with our model permits to determine whether the galaxy is in the compression or in the re-accretion phase. It also provides an important constraint upon the dynamical modeling of an ICM-ISM interactions.
Dark matter self interactions can leave distinctive signatures on the properties of satellite galaxies around Milky Way--like hosts through their impact on tidal stripping, ram pressure, and gravothermal collapse. We delineate the regions of self-int eracting dark matter parameter space---specified by interaction cross section and a velocity scale---where each of these effects dominates, and show how the relative mass loss depends on the satellites initial mass, density profile and orbit. We obtain novel, conservative constraints in this parameter space using Milky Way satellite galaxies with notably high central densities and small pericenter distances. Our results for self-interacting dark matter models, in combination with constraints from clusters of galaxies, favor velocity-dependent cross sections that lead to gravothermal core collapse in the densest satellites.
We study the evolution of galactic magnetic fields using 3D smoothed particle magnetohydrodynamics (SPMHD) simulations of galaxies with an imposed spiral potential. We consider the appearance of reversals of the field, and amplification of the field. We find magnetic field reversals occur when the velocity jump across the spiral shock is above $approx$20km s$^{-1}$, occurring where the velocity change is highest, typically at the inner Lindblad resonance (ILR) in our models. Reversals also occur at corotation, where the direction of the velocity field reverses in the co-rotating frame of a spiral arm. They occur earlier with a stronger amplitude spiral potential, and later or not at all with weaker or no spiral arms. The presence of a reversal at a radii of around 4--6 kpc in our fiducial model is consistent with a reversal identified in the Milky Way, though we caution that alternative Galaxy models could give a similar reversal. We find that relatively high resolution, a few million particles in SPMHD, is required to produce consistent behaviour of the magnetic field. Amplification of the magnetic field occurs in the models, and while some may be genuinely attributable to differential rotation or spiral arms, some may be a numerical artefact. We check our results using Athena, finding reversals but less amplification of the field, suggesting that some of the amplification of the field with SPMHD is numerical.
Nuclear inflows of metal-poor interstellar gas triggered by galaxy interactions can account for the systematically lower central oxygen abundances observed in local interacting galaxies. Here, we investigate the metallicity evolution of a large set o f simulations of colliding galaxies. Our models include cooling, star formation, feedback, and a new stochastic method for tracking the mass recycled back to the interstellar medium from stellar winds and supernovae. We study the influence of merger-induced inflows, enrichment, gas consumption, and galactic winds in determining the nuclear metallicity. The central metallicity is primarily a competition between the inflow of low-metallicity gas and enrichment from star formation. An average depression in the nuclear metallicity of ~0.07 is found for gas-poor disk-disk interactions. Gas-rich disk-disk interactions, on the other hand, typically have an enhancement in the central metallicity that is positively correlated with the gas content. The simulations fare reasonably well when compared to the observed mass-metallicity and separation-metallicity relationships, but further study is warranted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا