ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical Simulations of Interacting Gas-Rich Barred Galaxies

172   0   0.0 ( 0 )
 نشر من قبل Ingo Berentzen
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using an N-body+SPH code we have performed numerical simulations to investigate the dynamical effects of an interaction between an initially barred galaxy and a small spherical companion. In the models described here the small companion passes through the disk of the larger galaxy perpendicular to its plane. The impact positions and times are varied with respect to the evolutionary phase of the bar and disc. The interactions produce expanding ring structures, offset bars, spokes, and other asymmetries in the stars and gas. They also affect the strength and pattern speed of the bar.



قيم البحث

اقرأ أيضاً

142 - I. Berentzen 2003
We investigate the dynamical effects of an interaction between an initially barred galaxy and a small spherical companion using an N-body/SPH algorithm. In the models described here the small companion passes through the disc of the larger galaxy nea r-perpendicular to its plane. The impact positions and times are varied with respect to the phase of the bar and the dynamical evolution of the disc. The interactions produce expanding ring structures, offset bars, spokes,and other asymmetries in the stars and gas. These characteristic signatures of the interaction are present in the disc for about 1 Gyr. We find that in some cases it is possible to destroy the bar while keeping the disc structure. In general the central impacts cause larger damage to the bar and the disc than the peripheral ones. The interaction tends to accelerate the transition from a strongly barred galaxy to a weakly or non-barred galaxy. The final disc morphology is determined more by the impact position relative to the bar rather than the impact time.
The observed velocities of the gas in barred galaxies are a combination of the azimuthally-averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modeling. In this work, we examine the performance of the tilted-ring method and the DiskFit algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under/over-estimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DiskFit, which does include streaming motions, is limited to orientations where the bar is not-aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.
514 - Woong-Tae Kim 2012
Barred galaxies are known to possess magnetic fields that may affect the properties of bar substructures such as dust lanes and nuclear rings. We use two-dimensional high-resolution magnetohydrodynamic (MHD) simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures as well as on the mass inflow rates to the galaxy center. The gaseous medium is assumed to be infinitesimally-thin, isothermal, non-self-gravitating, and threaded by initially uniform, azimuthal magnetic fields. We find that there exists an outermost x1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks, temporarily causing the dust lanes to bend into an L shape and eventually leading to a smaller and more centrally distributed ring than in unmagnetized models. The mass inflow rates in magnetized models correspondingly become larger, by more than two orders of magnitude when the initial fields have an equipartition value with thermal energy, than in the unmagnetized counterparts. Outside the outermost x1-orbit, on the other hand, an MHD dynamo due to the combined action of the bar potential and background shear operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms has a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density which propagate along the arms to turn the outer disk into a highly chaotic state.
170 - Zhi Li , Juntai Shen 2015
Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of $x_2$ orbits. All roundish nuclear rings in our simulations settle in the range of $x_2$ orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the $x_2$ orbital family, i.e. round nuclear rings are allowed only in the radial range of $x_2$ orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter $f_{rm ring}$ measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.
We study the evolution of gravitationally recoiled supermassive black holes (BHs) in massive gas-rich galaxies by means of high-resolution hydrodynamical simulations. We find that the presence of a massive gaseous disc allows recoiled BHs to return t o the centre on a much shorter timescale than for purely stellar discs. Also, BH accretion and feedback can strongly modify the orbit of recoiled BHs and hence their return timescale, besides affecting the distribution of gas and stars in the galactic centre. However, the dynamical interaction of kicked BHs with the surrounding medium is in general complex and can facilitate both a fast return to the centre as well as a significant delay. The Bondi-Hoyle-Lyttleton accretion rates of the recoiling BHs in our simulated galaxies are favourably high for the detection of off-centred AGN if kicked within gas-rich discs -- up to a few per cent of the Eddington accretion rate -- and are highly variable on timescales of a few 10^7 yrs. In major merger simulations of gas-rich galaxies, we find that gravitational recoils increase the scatter in the BH mass -- host galaxy relationships compared to simulations without kicks, with the BH mass being more sensitive to recoil kicks than the bulge mass. A generic result of our numerical models is that the clumpy massive discs suggested by recent high-redshift observations, as well as the remnants of gas-rich mergers, exhibit a gravitational potential that falls steeply in the central regions, due to the dissipative concentration of baryons. As a result, supermassive BHs should only rarely be able to escape from massive galaxies at high redshifts, which is the epoch where the bulk of BH recoils is expected to occur.[Abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا