ﻻ يوجد ملخص باللغة العربية
We have compared the intensity distribution of molecular line emission with that of dust continuum emission, and modeled molecular line profiles in three different preprotostellar cores in order to test how dynamical evolution is related to chemical evolution, and whether we can use different chemical tracers to identify specific dynamical evolutionary stages. We used dust continuum emission to obtain the input density and temperature structures by calculating radiative transfer of dust emission. Our results show that chemical evolution is dependent on dynamical processes, which can give different evolutionary timescales, as well as the density structure of the core.
Understanding the depletion of heavy elements is a fundamental step towards determining the structure of pre-protostellar cores just prior to collapse. We study the dependence of the NO abundance on position in the pre-protostellar cores L1544 and L1
High levels of deuterium fraction in N$_2$H$^+$ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ($D_{rm frac}^{{rm N}_2{rm H}^+} equiv {rm N}_2{rm D}^+/{rm N}_2{rm H}^+ gtr
We report on a survey of h2d towards protostellar cores in low-mass star formation and quiescent regions in the Galaxy. Twenty-three out of thirty-two observed sources have significant ($gsim 5sigma$) h2d emission. Ion-molecule chemistry, which pre
The deuterium fractionation, Dfrac, has been proposed as an evolutionary indicator in pre-protostellar and protostellar cores of low-mass star-forming regions. We investigate Dfrac, with high angular resolution, in the cluster environment surrounding
We present results of 1.3 mm dust polarization observations toward 16 nearby, low-mass protostars, mapped with ~2.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with ou