ترغب بنشر مسار تعليمي؟ اضغط هنا

The depletion of NO in pre-protostellar cores

224   0   0.0 ( 0 )
 نشر من قبل Pierre Hily-Blant
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Meltem Akyilmaz




اسأل ChatGPT حول البحث

Understanding the depletion of heavy elements is a fundamental step towards determining the structure of pre-protostellar cores just prior to collapse. We study the dependence of the NO abundance on position in the pre-protostellar cores L1544 and L183. We observed the 150 GHz and 250~GHz transitions of NO and the 93 GHz transitions of NTHP towards L1544 and L183 using the IRAM 30 m telescope. We compare the variation of the NO column density with position in these objects with the H column density derived from dust emission measurements. We find that NO behaves differently from NTHP and appears to be partially depleted in the high density core of L1544. Other oxygen-containing compounds are also likely to be partially depleted in dense-core nuclei. The principal conclusions are that: the prestellar core L1544 is likely to be carbon-rich; the nitrogen chemistry did not reach equilibrium prior to gravitational collapse, and nitrogen is initially (at densities of the order of $10^4$~cm$^{-3}$) mainly in atomic form; the grain sticking probabilities of atomic C, N and, probably, O are significantly smaller than unity.



قيم البحث

اقرأ أيضاً

105 - Aurore Bacmann 2002
We present new results on CO depletion in a sample of nearby pre-stellar cores, based on observations of the millimeter C17O and C18O lines and the 1.3 mm dust emission with the IRAM 30m telescope. In most cases, the distribution of CO is much flatte r than that of the dust, whereas other tracers, like N2H+, still probe the latter. In the centre of these objects, we estimate CO to be underabundant by a factor 4-15 depending on the cores. The CO underabundance is more pronounced in the central regions and appears to decrease with increasing distance from the core centre. This underabundance is most likely due to the freezing out of CO onto the dust grains in the cold, dense parts of the cores. We find evidence for an increase of the CO depletion degree with the core density.
72 - Jeong-Eun Lee 2002
We have compared the intensity distribution of molecular line emission with that of dust continuum emission, and modeled molecular line profiles in three different preprotostellar cores in order to test how dynamical evolution is related to chemical evolution, and whether we can use different chemical tracers to identify specific dynamical evolutionary stages. We used dust continuum emission to obtain the input density and temperature structures by calculating radiative transfer of dust emission. Our results show that chemical evolution is dependent on dynamical processes, which can give different evolutionary timescales, as well as the density structure of the core.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 1_{10}-1_{11} emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1 N. The data reveal small-scale condensations within both cores, with mass upper limits of M <~ 0.02M_Sun (~ 20 M_Jup). The SM1 condensation is consistent with a nearly-symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated, and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates these sources are unlikely to fragment, suggesting that both will form single stars. H2D+ is only detected toward SM1N, offset from the continuum peak by ~150-200 AU. This offset may be due to either heating from an undetected, young, low luminosity protostellar source or first hydrostatic core, or HD (and consequently H2D+) depletion in the cold centre of the condensation. We propose that SM1 is protostellar, and that the condensation detected by ALMA is a warm (T ~ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data reveal observationally the earliest stages of the formation of circumstellar accretion regions, and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.
The CS molecule is known to be absorbed onto dust in the cold and dense conditions, causing it to get significantly depleted in the central region of cores. This study is aimed to investigate the depletion of the CS molecule using the optically thin C$^{34}$S molecular line observations. We mapped five prestellar cores, L1544, L1552, L1689B, L694-2, and L1197 using two molecular lines, C$^{34}$S $(J=2-1)$ and N$_2$H$^+$ $(J=1-0)$ with the NRO 45-m telescope, doubling the number of cores where the CS depletion was probed using C$^{34}$S. In most of our targets, the distribution of C$^{34}$S emission shows features that suggest that the CS molecule is generally depleted in the center of the prestellar cores. The radial profile of the CS abundance with respect to H$_2$ directly measured from the CS emission and the Herschel dust emission indicates that the CS molecule is depleted by a factor of $sim$3 toward the central regions of the cores with respect to their outer regions. The degree of the depletion is found to be even more enhanced by an order of magnitude when the contaminating effect introduced by the presence of CS molecules in the surrounding envelope that lie along the line-of-sight is removed. Except for L1197 which is classified as relatively the least evolved core in our targets based on its observed physical parameters, we found that the remaining four prestellar cores are suffering from significant CS depletion at their central region regardless of the relative difference in their evolutionary status.
185 - G. Busquet 2010
The deuterium fractionation, Dfrac, has been proposed as an evolutionary indicator in pre-protostellar and protostellar cores of low-mass star-forming regions. We investigate Dfrac, with high angular resolution, in the cluster environment surrounding the UCHII region IRAS 20293+3952. We performed high angular resolution observations with the IRAM Plateau de Bure Interferometer (PdBI) of the ortho-NH2D 1_{11}-1_{01} line at 85.926 GHz and compared them with previously reported VLA NH3 data. We detected strong NH2D emission toward the pre-protostellar cores identified in NH3 and dust emission, all located in the vicinity of the UCHII region IRAS 20293+3952. We found high values of Dfrac~0.1-0.8 in all the pre-protostellar cores and low values, Dfrac<0.1, associated with young stellar objects. The high values of Dfrac in pre-protostellar cores could be indicative of evolution, although outflow interactions and UV radiation could also play a role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا