ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure, Dynamics and Deuterium Fractionation of Massive Pre-Stellar Cores

348   0   0.0 ( 0 )
 نشر من قبل Matthew Goodson
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High levels of deuterium fraction in N$_2$H$^+$ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ($D_{rm frac}^{{rm N}_2{rm H}^+} equiv {rm N}_2{rm D}^+/{rm N}_2{rm H}^+ gtrsim 0.1$) is longer than the free-fall time, possibly ten times longer. Here, we explore the deuteration of turbulent, magnetized cores with 3D magnetohydrodynamics simulations. We use an approximate chemical model to follow the growth in abundances of N$_2$H$^+$ and N$_2$D$^+$. We then examine the dynamics of the core using each tracer for comparison to observations. We find that the velocity dispersion of the core as traced by N$_2$D$^+$ appears slightly sub-virial compared to predictions of the Turbulent Core Model of McKee & Tan, except at late times just before the onset of protostar formation. By varying the initial mass surface density, the magnetic energy, the chemical age, and the ortho-to-para ratio of H$_2$, we also determine the physical and temporal properties required for high deuteration. We find that low initial ortho-to-para ratios ($lesssim 0.01$) and/or multiple free-fall times ($gtrsim 3$) of prior chemical evolution are necessary to reach the observed values of deuterium fraction in pre-stellar cores.

قيم البحث

اقرأ أيضاً

High levels of deuterium fractionation of $rm N_2H^+$ (i.e., $rm D_{frac}^{N_2H^+} gtrsim 0.1$) are often observed in pre-stellar cores (PSCs) and detection of $rm N_2D^+$ is a promising method to identify elusive massive PSCs. However, the physical and chemical conditions required to reach such high levels of deuteration are still uncertain, as is the diagnostic utility of $rm N_2H^+$ and $rm N_2D^+$ observations of PSCs. We perform 3D magnetohydrodynamics simulations of a massive, turbulent, magnetised PSC, coupled with a sophisticated deuteration astrochemical network. Although the core has some magnetic/turbulent support, it collapses under gravity in about one freefall time, which marks the end of the simulations. Our fiducial model achieves relatively low $rm D_{frac}^{N_2H^+} sim 0.002$ during this time. We then investigate effects of initial ortho-para ratio of $rm H_2$ ($rm OPR^{H_2}$), temperature, cosmic ray (CR) ionization rate, CO and N-species depletion factors and prior PSC chemical evolution. We find that high CR ionization rates and high depletion factors allow the simulated $rm D_{frac}^{N_2H^+}$ and absolute abundances to match observational values within one freefall time. For $rm OPR^{H_2}$, while a lower initial value helps the growth of $rm D_{frac}^{N_2H^+}$, the spatial structure of deuteration is too widespread compared to observed systems. For an example model with elevated CR ionization rates and significant heavy element depletion, we then study the kinematic and dynamic properties of the core as traced by its $rm N_2D^+$ emission. The core, undergoing quite rapid collapse, exhibits disturbed kinematics in its average velocity map. Still, because of magnetic support, the core often appears kinematically sub-virial based on its $rm N_2D^+$ velocity dispersion.
Clouds of high infrared extinction are promising sites of massive star/cluster formation. A large number of cloud cores discovered in recent years allows investigation of possible evolutionary sequence among cores in early phases. We have conducted a survey of deuterium fractionation toward 15 dense cores in various evolutionary stages, from high-mass starless cores to ultracompact Hii regions, in the massive star-forming clouds of high extinction, G34.43+0.24, IRAS 18151-1208, and IRAS 18223-1243, with the Submillimeter Telescope (SMT). Spectra of N2H+ (3 - 2), N2D+ (3 - 2), and C18O (2 - 1) were observed to derive the deuterium fractionation of N2H+, Dfrac equiv N(N2D+)/N(N2H+), as well as the CO depletion factor for every selected core. Our results show a decreasing trend in Dfrac with both gas temperature and linewidth. Since colder and quiescent gas is likely to be associated with less evolved cores, larger Dfrac appears to correlate with early phases of core evolution. Such decreasing trend resembles the behavior of Dfrac in the low-mass protostellar cores and is consistent with several earlier studies in high-mass protostellar cores. We also find a moderate increasing trend of Dfrac with the CO depletion factor, suggesting that sublimation of ice mantles alters the competition in the chemical reactions and reduces Dfrac. Our findings suggest a general chemical behavior of deuterated species in both low- and high-mass proto-stellar candidates at early stages. In addition, upper limits to the ionization degree are estimated to be within 2 times 10^-7 and 5 times 10^-6. The four quiescent cores have marginal field-neutral coupling and perhaps favor turbulent cooling flows.
100 - Aurore Bacmann 2003
We report the detection of D2CO in a sample of starless dense cores, in which we previously measured the degree of CO depletion. The deuterium fractionation is found extremely high, [D2CO]/[H2CO] ~ 1-10 %, similar to that reported in low-mass protost ars. This provides convincing evidence that D2CO is formed in the cold pre-stellar cores, and later desorbed when the gas warms up in protostars. We find that the cores with the highest CO depletions have also the largest [D2CO]/[H2CO] ratios, supporting the theoretical prediction that deuteration increases with increasing CO depletion.
124 - Shuo Kong 2013
The deuterium fraction [N$_2$D$^+$]/[N$_2$H$^+$], may provide information about the ages of dense, cold gas structures, important to compare with dynamical models of cloud core formation and evolution. Here we introduce a complete chemical network wi th species containing up to three atoms, with the exception of the Oxygen chemistry, where reactions involving H$_3$O$^+$ and its deuterated forms have been added, significantly improving the consistency with comprehensive chemical networks. Deuterium chemistry and spin states of H$_2$ and H$_3^+$ isotopologues are included in this primarily gas-phase chemical model. We investigate dependence of deuterium chemistry on model parameters: density ($n_{rm H}$), temperature, cosmic ray ionization rate, and gas-phase depletion factor of heavy elements ($f_{rm D}$). We also explore the effects of time-dependent freeze-out of gas-phase species and dynamical evolution of density at various rates relative to free-fall collapse. For a broad range of model parameters, the timescales to reach large values of $D_{rm frac}^{rm N_2H^+} gtrsim 0.1$, observed in some low- and high-mass starless cores, are relatively long compared to the local free-fall timescale. These conclusions are unaffected by introducing time-dependent freeze-out and considering models with evolving density, unless the initial $f_{rm D} gtrsim$ 10. For fiducial model parameters, achieving $D_{rm frac}^{rm N_2H^+} gtrsim 0.1$ requires collapse to be proceeding at rates at least several times slower than that of free-fall collapse, perhaps indicating a dynamically important role for magnetic fields in the support of starless cores and thus the regulation of star formation.
We have performed a pointed survey of N2D+ 2-1 and N2D+ 3-2 emission toward 64 N2H+-bright starless and protostellar cores in the Perseus molecular cloud using the Arizona Radio Observatory Submillimeter Telescope and Kitt Peak 12 m telescope. We fin d a mean deuterium fractionation in N2H+, R_D = N(N2D+)/N(N2H+), of 0.08, with a maximum R_D = 0.2. In detected sources, we find no significant difference in the deuterium fractionation between starless and protostellar cores, nor between cores in clustered or isolated environments. We compare the deuterium fraction in N2H+ with parameters linked to advanced core evolution. We only find significant correlations between the deuterium fraction and increased H_2 column density, as well as with increased central core density, for all cores. Towards protostellar sources, we additionally find a significant anti-correlation between R_D and bolometric temperature. We show that the Perseus cores are characterized by low CO depletion values relative to previous studies of star forming cores, similar to recent results in the Ophiuchus molecular cloud. We suggest that the low average CO depletion is the dominant mechanism that constrains the average deuterium fractionation in the Perseus cores to small values. While current equilibrium and dynamic chemical models are able to reproduce the range of deuterium fractionation values we find in Perseus, reproducing the scatter across the cores requires variation in parameters such as the ionization fraction or the ortho- to para-H_2 ratio across the cloud, or a range in core evolution timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا