ﻻ يوجد ملخص باللغة العربية
We describe an extensive FUSE survey of highly ionized oxygen in the vicinity of the Milky Way that serves as an example of the type of study that would be desirable for other galactic systems. Understanding the origin of hot gas in the vicinity of galaxies and its relationship to the intergalactic medium presents a major observational challenge. Ultraviolet absorption-line spectroscopy is currently the most direct means for comprehensive investigations of the gas in galactic environments, but even with present (and near-term) facilities the number of background objects available to probe nearby galaxy halos and low-redshift cosmological structures is limited. Studying these structures over a range of impact parameters and angular separations would provide fundamental information about the baryonic content of the hot gas, its physical conditions, and its origins. A large space telescope optimized for high resolution spectroscopy in the 900-3200 Angstrom wavelength region at a sensitivity sufficient to observe faint AGNs/QSOs at angular separations of <1 degree would be ideal for such studies.
We study the central dark matter (DM) cusp evolution in cosmological galactic halos. Models with and without baryons (baryons+DM, hereafter BDM model, and pure DM, PDM model, respectively) are advanced from identical initial conditions. The DM cusp p
The precise localization (<1) of multiple fast radio bursts (FRBs) to z>0.1 galaxies has confirmed that the dispersion measures (DMs) of these enigmatic sources afford a new opportunity to probe the diffuse ionized gas around and in between galaxies.
Context: Halpha images of star bursting irregular galaxies reveal a large amount of extended ionized gas structures, in some cases at kpc-distance away from any place of current star forming activity. A kinematic analysis of especially the faint stru
Gaseous halos play a key role for understanding inflow, feedback and the overall baryon budget in galaxies. Literature models predict transitions of the state of the gaseous halo between cold and hot accretion, winds, fountains and hydrostatic halos
Ongoing accretion onto galactic disks has been recently theorized to progress via the unstable cooling of the baryonic halo into condensed clouds. These clouds have been identified as analogous to the High-Velocity Clouds (HVCs) observed in HI in our