ﻻ يوجد ملخص باللغة العربية
The precise localization (<1) of multiple fast radio bursts (FRBs) to z>0.1 galaxies has confirmed that the dispersion measures (DMs) of these enigmatic sources afford a new opportunity to probe the diffuse ionized gas around and in between galaxies. In this manuscript, we examine the signatures of gas in dark matter halos (aka halo gas) on DM observations in current and forthcoming FRB surveys. Combining constraints from observations of the high velocity clouds, OVII absorption, and the DM to the Large Magellanic Cloud with hydrostatic models of halo gas, we estimate that our Galactic halo will contribute ${rm DM}_{rm MW,halo} approx 50-80 rm pc/cm^{-3}$ from the Sun to 200 kpc independent of any contribution from the Galactic ISM. Extending analysis to the Local Group, we demonstrate that M31s halo will be easily detected by high-sample FRB surveys (e.g. CHIME) although signatures from a putative Local Group medium may compete. We then review current empirical constraints on halo gas in distant galaxies and discuss the implications for their DM contributions. We further examine the DM probability distribution function of a population of FRBs at z >> 0 using an updated halo mass function and new models for the halo density profile. Lastly, we illustrate the potential of FRB experiments for resolving the baryonic fraction of halos by analyzing simulated sightlines through the CASBaH survey. All of the code and data products of our analysis are available at https://github.com/FRBs.
The dispersion measure -- redshift relation of Fast Radio Bursts, $mathrm{DM}(z)$, has been proposed as a potential new probe of the cosmos, complementary to existing techniques. In practice, however, the effectiveness of this approach depends on a n
The recently discovered fast radio bursts (FRBs), presumably of extra-galactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dis
The turbulence in the diffuse intergalactic medium (IGM) plays an important role in various astrophysical processes across cosmic time, but it is very challenging to constrain its statistical properties both observationally and numerically. Via the s
Gaseous halos play a key role for understanding inflow, feedback and the overall baryon budget in galaxies. Literature models predict transitions of the state of the gaseous halo between cold and hot accretion, winds, fountains and hydrostatic halos
The joint analysis of the Dispersion and Faraday Rotation Measure from distant, polarised Fast Radio Bursts may be used to put constraints on the origin and distribution of extragalactic magnetic fields on cosmological scales. While the combination o