ﻻ يوجد ملخص باللغة العربية
Context: Halpha images of star bursting irregular galaxies reveal a large amount of extended ionized gas structures, in some cases at kpc-distance away from any place of current star forming activity. A kinematic analysis of especially the faint structures in the halo of dwarf galaxies allows insights into the properties and the origin of this gas component. This is important for the chemical evolution of galaxies, the enrichment of the intergalactic medium, and for the understanding of the formation of galaxies in the early universe. Aims: We want to investigate whether the ionized gas detected in two irregular dwarf galaxies (NGC 2366 and NGC 4861) stays gravitationally bound to the host galaxy or can escape from it by becoming a freely flowing wind. Methods: Very deep Halpha images of NGC 2366 and NGC 4861 were obtained to detect and catalog both small and large scale ionized gas structures down to very low surface brightnesses. Subsequently, high-resolution long-slit echelle spectroscopy of the Halpha line was performed for a detailed kinematic analysis of the most prominent filaments and shells. To calculate the escape velocity of both galaxies and to compare it with the derived expansion velocities of the detected filaments and shells, we used dark matter halo models. Results: We detected a huge amount of both small scale (up to a few hundred pc) and large scale (about 1-2 kpc of diameter or length) ionized gas structures on our Halpha images. Many of the fainter ones are new detections. The echelle spectra reveal outflows and expanding bubbles/shells with velocities between 20 and 110 km/s. Several of these structures are in accordance with filaments in the Halpha images. A comparison with the escape velocities of the galaxies derived from the NFW dark matter halo model shows that all gas features stay gravitationally bound.
Using 3D spectroscopy with a scanning Fabry-Perot interferometer, we study the ionized gas kinematics in 59 nearby dwarf galaxies. Combining our results with data from literature, we provide a global relation between the gas velocity dispersion (sigm
In order to examine the excitation and ionization mechanism of extraplanar diffuse ionized gas (DIG) we have obtained optical longslit spectra of seven edge-on spiral galaxies. In four objects the brightest emission lines can be traced out to distanc
We describe an extensive FUSE survey of highly ionized oxygen in the vicinity of the Milky Way that serves as an example of the type of study that would be desirable for other galactic systems. Understanding the origin of hot gas in the vicinity of g
We address the spatial scale, ionization structure, mass and metal content of gas at the Milky Way disk-halo interface detected as absorption in the foreground of seven closely-spaced, high-latitude halo blue horizontal branch stars (BHBs) with heigh
We present a study of the ionized gas in a sample of 65 nearby early-type galaxies, for which we have acquired optical intermediate-resolution spectra. Emission lines are detected in ~89 % of the sample. The incidence of emission appears independent