ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Origin of the High-Ionization Intermediate-Velocity Gas Toward HD 14434

464   0   0.0 ( 0 )
 نشر من قبل David C. Knauth
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David C. Knauth




اسأل ChatGPT حول البحث

We present Far Ultraviolet Spectroscopic Explorer and Space Telescope Imaging Spectrograph observations of high-ionization interstellar absorption toward HD 14434 [(l, b) = (135.1, -3.8); d ~ 2.3 kpc], an O5.5 V star in the Perseus OB1 Association. Intermediate-velocity interstellar Si IV and C IV absorption is present at V_LSR = -67 km/s, while low-ionization gas associated with the Perseus arm is detected at ~ -50 km/s. Neither N V nor O VI is detected at V_LSR = -67 km/s; although Al III and Fe III, tracers of warm ionized gas, are seen. The high-ion column densities in the -67 km/s component are log[N(C IV)] = 13.92 +/- 0.02 cm^-2, log[N(Si IV)] = 13.34 +/- 0.02 cm^-2, log[N(N V)] < 12.65 cm^-2, and log[N(O VI)] < 13.73 cm^-2 (3-sigma limits). The observed C IV/Si IV ratio of 3.8 +/- 0.3 in this intermediate-velocity cloud (IVC) is similar to the Galactic average (4.3 +/- 1.9). Our analysis of the Si IV andC IV line widths yields a temperature of T = 10,450 +/- 3,400 K for this component. At this low temperature, neither Si IV nor C IV can be produced via collisions. We investigate several photoionization models to explain the intermediate-velocity Si IV and C IV absorption toward HD 14434. Photoionization models employing cooling of a hot (T ~ 10^6 K) diffuse plasma as the source of ionizing radiation reproduces the observed properties of the IVC toward HD 14434 quite well. The hot plasma responsible for the ionizing radiation in these models may be attributed to hot gas contained in a supershell in or near the Perseus Arm or from a more generally distributed hot ionized medium.



قيم البحث

اقرأ أيضاً

76 - D. E. Welty 2002
We combine UV spectra obtained with the HST/GHRS echelle, IMAPS, and Copernicus to study the abundances and physical conditions in the predominantly ionized gas seen at high (-105 to -65 km/s) and intermediate velocities (-60 to -10 km/s) toward zeta Ori. We have high resolution (FWHM ~ 3.3-4.5 km/s) and/or high S/N spectra for at least two significant ions of C, N, Al, Si, S, and Fe -- enabling accurate estimates for both the total N(H II) and the elemental depletions. C, N, and S have essentially solar relative abundances; Al, Si, and Fe appear to be depleted by about 0.8, 0.3-0.4, and 0.95 dex, respectively. While various ion ratios would be consistent with collisional ionization equilibrium (CIE) for T ~ 25,000-80,000 K, the widths of individual high-velocity absorption components indicate that T ~ 9000 K -- so the gas is not in CIE. Analysis of the C II fine-structure excitation equilibrium yields estimated densities (n_e ~ n_H ~ 0.1-0.2 cm^{-3}), thermal pressures (2 n_H T ~ 2000-4000 cm^{-3}K), and thicknesses (0.5-2.7 pc) for the individual clouds. We compare the abundances and physical properties derived for these clouds with those found for gas at similar velocities toward 23 Ori and tau CMa, and also with several models for shocked gas. While the shock models can reproduce some features of the observed line profiles and some of the observed ion ratios, there are also significant differences. The measured depletions suggest that ~10% of the Al, Si, and Fe originally locked in dust in the pre-shock medium may have been returned to the gas phase, consistent with predictions for the destruction of silicate dust in a 100 km/s shock. The near-solar gas phase abundance of carbon, however, seems inconsistent with the predicted longer time scales for the destruction of graphite grains.
The Smith Cloud is a gaseous high-velocity cloud (HVC) in an advanced state of accretion, only 2.9 kpc below the Galactic plane and due to impact the disk in 27 Myr. It is unique among HVCs in having a known distance (12.4+/-1.3 kpc) and a well-const rained 3D velocity (296 km/s), but its origin has long remained a mystery. Here we present the first absorption-line measurements of its metallicity, using HST/COS UV spectra of three AGN lying behind the Cloud together with Green Bank Telescope 21 cm spectra of the same directions. Using Voigt-profile fitting of the S II 1250, 1253, 1259 triplet together with ionization corrections derived from photoionization modeling, we derive the sulfur abundance in each direction; a weighted average of the three measurements gives [S/H]=-0.28+/-0.14, or 0.53+0.21-0.15 solar metallicity. The finding that the Smith Cloud is metal-enriched lends support to scenarios where it represents recycled Galactic material rather than the remnant of a dwarf galaxy or accreting intergalactic gas. The metallicity and trajectory of the Cloud are both indicative of an origin in the outer disk. However, its large mass and prograde kinematics remain to be fully explained. If the cloud has accreted cooling gas from the corona during its fountain trajectory, as predicted in recent theoretical work, its current mass would be higher than its launch mass, alleviating the mass concern.
We provide new insight on the origin of the cold high-V$_{rm los}$ peaks ($sim$200 kms$^{-1}$) in the Milky Way bulge discovered in the APOGEE commissioning data citep{Nidever2012}. Here we show that such kinematic behaviour present in the field regi ons towards the Galactic bulge is not likely associated with orbits that build the boxy/peanut (B/P) bulge. To this purpose, a new set of test particle simulations of a kinematically cold stellar disk evolved in a 3D steady-state barred Milky Way galactic potential, has been analysed in detail. Especially bar particles trapped into the bar are identified through the orbital Jacobi energy $E_{J}$, which allows us to identify the building blocks of the B/P feature and investigate their kinematic properties. Finally, we present preliminary results showing that the high-V$_{rm los}$ features observed towards the Milky Way bulge are a natural consequence of a large-scale textit{midplane} particle structure, which is unlikely associated with the Galactic bar.
207 - N. Lehner , J. C. Howk 2009
Previous HST and FUSE observations have revealed highly ionized high-velocity clouds (HVCs) or more generally low HI column HVCs along extragalactic sightlines over 70-90% of the sky. The distances of these HVCs have remained largely unknown hamperin g to distinguish a Galactic origin (e.g., outflow, inflow) from a Local Group origin (e.g., warm-hot intergalactic medium). We present the first detection of highly ionized HVCs in the Cosmic Origins Spectrograph (COS) spectrum of the early-type star HS1914+7134 (l = 103, b=+24) located in the outer region of the Galaxy at 14.9 kpc. Two HVCs are detected in absorption at v_LSR = -118 and -180 km/s in several species, including CIV, SiIV, SiIII, CII, SiII, OI, but HI 21-cm emission is only seen at -118 km. Within 17 degrees of HS1914+7134, we found HVC absorption of low and high ions at similar velocities toward 5 extragalactic sight lines, suggesting that these HVCs are related. The component at -118 km/s is likely associated with the Outer Arm of the Milky Way. The highly ionized HVC at -180 km/s is an HVC plunging at high speed onto the thick disk of the Milky Way. This is the second detection of highly ionized HVCs toward Galactic stars, supporting a Galactic origin for at least some of these clouds.
We present a study of the abundances and physical conditions in the interstellar gas toward the heavily reddened star HD 192639 [E_(B-V) = 0.64], based on analysis of FUSE and HST/STIS spectra covering the range from 912 to 1361 A. This work constitu tes a survey of the analyses that can be performed to study the interstellar gas when combining data from different instruments. Low-velocity (-18 to -8 km/s) components are seen primarily for various neutral and singly ionized species such as C I, O I, S I, Mg II, Cl I, Cl II, Mn II, Fe II and Cu II. Numerous lines of H2 are present in the FUSE spectra, with a kinetic temperature for the lowest rotational levels T_(01) = (90 +/- 10) K. Analysis of the C I fine-structure excitation implies an average local density of hydrogen n_H = (16 +/- 3) cm^-3. The average electron density, derived from five neutral/first ion pairs under the assumption of photoionization equilibrium, is n_e = (0.11 +/- 0.02) cm^-3. The relatively complex component structure seen in high-resolution spectra of K I and Na I, the relatively low average density, and the measured depletions all suggest that the line of sight contains a number of diffuse clouds, rather than a single dense, translucent cloud. Comparisons of the fractions of Cl in Cl I and of hydrogen in molecular form suggest a higher molecular fraction, in the region(s) where H2 is present, than that derived considering the average line of sight. In general, such comparisons may allow the identification and characterization of translucent portions of such complex lines of sight. The combined data also show high-velocity components near -80 km/s for various species which appear to be predominantly ionized, and may be due to a radiative shock. A brief overview of the conditions in this gas will be given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا