ترغب بنشر مسار تعليمي؟ اضغط هنا

An efficient photoelectric X-ray Polarimeter for the study of Black Holes and Neutron Stars

43   0   0.0 ( 0 )
 نشر من قبل Soffitta
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Enrico Costa




اسأل ChatGPT حول البحث

In astronomy there are basically four kinds of observations to extract the information carried by electromagnetic radiation: photometry, imaging, spectroscopy and polarimetry. By optimal exploitation of the first three techniques, X-ray astronomy has been able to unveil the violent world of compact high energy sources. Here we report on a new instrument that brings high efficiency also to X-ray polarimetry, the last unexplored field of X-ray astronomy. It will then be possible to resolve the internal structures of compact sources which otherwise would remain inaccessible, even to X-ray interferometry1. Polarimetry could provide a direct, visual picture of the state of matter under extreme magnetic and gravitational fields by measuring the radiation polarized through interaction with the highly asymmetric matter distribution (accretion disk) and with the magnetic field. The new instrument derives the polarization information from the track of the photoelectrons imaged by a finely subdivided gas detector. Its great improvement of sensitivity (at least two orders of magnitude) will allow direct exploration of the most dramatic objects of the X-ray sky.



قيم البحث

اقرأ أيضاً

XEUS is a large area telescope aiming to rise X-ray Astronomy to the level of Optical Astronomy in terms of collecting areas. It will be based on two satellites, locked on a formation flight, one with the optics, one with the focal plane. The present design of the focal plane foresees, as an auxiliary instrument, the inclusion of a Polarimeter based on a Micropattern Chamber. We show how such a device is capable to solve open problems on many classes of High Energy Astrophysics objects and to use X-ray sources as a laboratory for a substantial progress on Fundamental Physics.
112 - Fabio Muleri 2006
Development of multi-layer optics makes feasible the use of X-ray telescope at energy up to 60-80 keV: in this paper we discuss the extension of photoelectric polarimeter based on Micro Pattern Gas Chamber to high energy X-rays. We calculated the sen sitivity with Neon and Argon based mixtures at high pressure with thick absorption gap: placing the MPGC at focus of a next generation multi-layer optics, galatic and extragalactic X-ray polarimetry can be done up till 30 keV.
291 - Enrico Costa 2007
The development of micropixel gas detectors, capable to image tracks produced in a gas by photoelectrons, makes possible to perform polarimetry of X-ray celestial sources in the focus of grazing incidence X-ray telescopes. HXMT is a mission by the Ch inese Space Agency aimed to survey the Hard X-ray Sky with Phoswich detectors, by exploitation of the direct demodulation technique. Since a fraction of the HXMT time will be spent on dedicated pointing of particular sources, it could host, with moderate additional resources a pair of X-ray telescopes, each with a photoelectric X-ray polarimeter in the focal plane. We present the design of the telescopes and the focal plane instrumentation and discuss the performance of this instrument to detect the degree and angle of linear polarization of some representative sources. Notwithstanding the limited resources the proposed instrument can represent a breakthrough in X-ray Polarimetry.
This white paper highlights compact object and fundamental physics science opportunities afforded by high-throughput broadband (0.1-60 keV) X-ray polarization observations. X-ray polarimetry gives new observables with geometric information about stel lar remnants which are many orders of magnitude too small for direct imaging. The X-ray polarimetric data also reveal details about the emission mechanisms and the structure of the magnetic fields in and around the most extreme objects in the Universe. Whereas the Imaging X-ray Polarimetry Explorer (IXPE) to be launched in 2021 will obtain first results for bright objects, a follow-up mission could be one order of magnitude more sensitive and would be able to use a broader bandpass to perform physics type experiments for representative samples of sources.
104 - C. M. Zhang , H.X. Yin , 2005
It is found that there exists an empirical linear relation between the high frequency $ high$ and low frequency $ low$ of quasi-periodic oscillations (QPOs) for black hole candidate (BHC), neutron star (NS) and white dwarf (WD) in the binary systems, which spans five orders of magnitude in frequency. For the NS Z (Atoll) sources, $ u_{high}$ and $ u_{low}$ are identified as the lower kHz QPO frequency and horizontal branch oscillations (HBOs) $ h$ (broad noise components); for the black hole candidates and low-luminosity neutron stars, they are the QPOs and broad noise components at frequencies between 1 and 10 Hz; for WDs, they are the ``dwarf nova oscillations (DNOs) and QPOs of cataclysmic variables (CVs). To interpret this relation, our model ascribes $ u_{high}$ to the Alfven wave oscillation frequency at a preferred radius and $ u_{low}$ to the same mechanism at another radius. Then, we can obtain $ low = 0.08 high$ and the relation between the upper kHz QPO frequency $ t$ and HBO to be $ h simeq 56 ({rm Hz}) ( t/{rm kHz})^{2}$, which are in accordance with the observed empirical relations. Furthermore, some implications of model are discussed, including why QPO frequencies of white dwarfs and neutron stars span five orders of magnitude in frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا