ترغب بنشر مسار تعليمي؟ اضغط هنا

An X-ray polarimeter for hard X-ray optics

113   0   0.0 ( 0 )
 نشر من قبل Paolo Soffitta
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabio Muleri




اسأل ChatGPT حول البحث

Development of multi-layer optics makes feasible the use of X-ray telescope at energy up to 60-80 keV: in this paper we discuss the extension of photoelectric polarimeter based on Micro Pattern Gas Chamber to high energy X-rays. We calculated the sensitivity with Neon and Argon based mixtures at high pressure with thick absorption gap: placing the MPGC at focus of a next generation multi-layer optics, galatic and extragalactic X-ray polarimetry can be done up till 30 keV.

قيم البحث

اقرأ أيضاً

248 - Enrico Costa 2007
The development of micropixel gas detectors, capable to image tracks produced in a gas by photoelectrons, makes possible to perform polarimetry of X-ray celestial sources in the focus of grazing incidence X-ray telescopes. HXMT is a mission by the Ch inese Space Agency aimed to survey the Hard X-ray Sky with Phoswich detectors, by exploitation of the direct demodulation technique. Since a fraction of the HXMT time will be spent on dedicated pointing of particular sources, it could host, with moderate additional resources a pair of X-ray telescopes, each with a photoelectric X-ray polarimeter in the focal plane. We present the design of the telescopes and the focal plane instrumentation and discuss the performance of this instrument to detect the degree and angle of linear polarization of some representative sources. Notwithstanding the limited resources the proposed instrument can represent a breakthrough in X-ray Polarimetry.
X-ray polarimetry promises to give new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calib ur to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.
102 - L. Heckmann , N. K. Iyer , M. Kiss 2019
SPHiNX is a proposed gamma-ray burst (GRB) polarimeter mission operating in the energy range 50-600 keV with the aim of studying the prompt emission phase. The polarisation sensitivity of SPHiNX reduces as the uncertainty on the GRB sky position incr eases. The stand-alone ability of the SPHiNX design to localise GRB positions is explored via Geant4 simulations. Localisation at the level of a few degrees is possible using three different routines. This results in a large fraction (> 80%) of observed GRBs having a negligible (< 5%) reduction in polarisation sensitivity due to the uncertainty in localisation.
X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polar imeter X-Calibur to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.
103 - H. Krawczynski 2010
We report on the design and estimated performance of a balloon-borne hard X-ray polarimeter called HX-POL. The experiment uses a combination of Si and Cadmium Zinc Telluride detectors to measure the polarization of 50 keV-400 keV X-rays from cosmic s ources through the dependence of the angular distribution of Compton scattered photons on the polarization direction. On a one-day balloon flight, HX-POL would allow us to measure the polarization of bright Crab-like sources for polarization degrees well below 10%. On a longer (15-30 day) flight from Australia or Antarctica, HX-POL would be be able to measure the polarization of bright galactic X-ray sources down to polarization degrees of a few percent. Hard X-ray polarization measurements provide unique venues for the study of particle acceleration processes by compact objects and relativistic outflows. In this paper, we discuss the overall instrument design and performance. Furthermore, we present results from laboratory tests of the Si and CZT detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا