ترغب بنشر مسار تعليمي؟ اضغط هنا

The Flattened, Rotating Molecular Gas Core of Protostellar Jet HH 212

122   0   0.0 ( 0 )
 نشر من قبل Jennifer J. Wiseman
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently discovered protostellar jet known as HH212 is beautifully symmetric, with a series of paired shock knots and bow shocks on either side of the exciting source region, IRAS 05413-0104 (Zinnecker et al. 1998). We present VLA ammonia maps of the IRAS 05413-0104 molecular gas envelope in which the protostellar jet source is embedded. We find that the envelope, with mass of 0.2 M(sun) detected by the interferometer, is flattened perpendicular to the jet axis with a FWHM diameter of 12000 AU and an axis ratio of 2:1, as seen in NH3 (1,1) emission. There is a velocity gradient of about 4-5 km sec^-1 pc^-1 across the flattened disk-like core, suggestive of rotation around an axis aligned with the jet. Flux-weighted mean velocities increase smoothly with radius with a roughly constant velocity gradient. In young (Class 0) systems such as HH212, a significant amount of material is still distributed in a large surrounding envelope, and thus the observable kinematics of the system may reflect the less centrally condensed, youthful state of the source and obscuration of central dynamics. The angular momentum of this envelope material may be released from infalling gas through rotation in the HH212 jet, as recent observations suggest (Davis et al. 2000). A blue-shifted wisp or bowl of emitting gas appears to be swept up along the blue side of the outflow, possibly lining the cavity of a wider angle wind around the more collimated shock jet axis. Our ammonia (2,2)/(1,1) ratio map indicates that this very cold core is heated to 14 Kelvin degrees in a centrally condensed area surrounding the jet source. This edge-on core and jet system appears to be young and deeply embedded. This environment, however, is apparently not disrupting the pristine symmetry and collimation of the jet.



قيم البحث

اقرأ أيضاً

The central problem in forming a star is the angular momentum in the circumstellar disk which prevents material from falling into the central stellar core. An attractive solution to the angular momentum problem appears to be the ubiquitous (low-veloc ity and poorly-collimated) molecular outflows and (high-velocity and highly-collimated) protostellar jets accompanying the earliest phase of star formation that remove angular momentum at a range of disk radii. Previous observations suggested that outflowing material carries away the excess angular momentum via magneto-centrifugally driven winds from the surfaces of circumstellar disks down to ~ 10 AU scales, allowing the material in the outer disk to transport to the inner disk. Here we show that highly collimated protostellar jets remove the residual angular momenta at the ~ 0.05 AU scale, enabling the material in the innermost region of the disk to accrete toward the central protostar. This is supported by the rotation of the jet measured down to ~ 10 AU from the protostar in the HH 212 protostellar system. The measurement implies a jet launching radius of ~ 0.05_{-0.02}^{+0.05} AU on the disk, based on the magneto-centrifugal theory of jet production, which connects the properties of the jet measured at large distances to those at its base through energy and angular momentum conservation.
We present Spitzer (IRAC) images observations and a VLT 2.1micron image of the HH 212 outflow. We find that this outflow has a strong symmetry, with jet/counterjet knot pairs with Delta x less than 1 arcsec position offsets. We deduce that the jet/co unterjet knots are ejected with time differences Delta tau_0 approx. 6 yr and velocity differences Delta v_0~ 2 km/s. We also analyze the deviations of the knot positions perpendicular to the outflow axis, and interpret them in terms of a binary orbital motion of the outflow source. Through this model, we deduce a ~0.7M_solar mass for the outflow source, and a separation of ~80 AU between the components of the binary (assuming equal masses for the two components). Finally, using the IRAC data and the VLT 2.1micron image we have measured the proper motion velocities, obtaining values from 50 to 170km/s.
HH 212 is one of the well-studied protostellar systems, showing the first vertically resolved disk with a warm atmosphere around the central protostar. Here we report a detection of 9 organic molecules (including newly detected ketene, formic acid, d euterated acetonitrile, methyl formate, and ethanol) in the disk atmosphere, confirming that the disk atmosphere is, for HH 212, the chemically rich component, identified before at a lower resolution as a hot-corino. More importantly, we report the first systematic survey and abundance measurement of organic molecules in the disk atmosphere within $sim$ 40 au of the central protostar. The relative abundances of these molecules are similar to those in the hot corinos around other protostars and in Comet Lovejoy. These molecules can be either (i) originally formed on icy grains and then desorbed into gas phase or (ii) quickly formed in the gas phase using simpler species ejected from the dust mantles. The abundances and spatial distributions of the molecules provide strong constraints on models of their formation and transport in star formation. These molecules are expected to form even more complex organic molecules needed for life and deeper observations are needed to find them.
We present SiO J=8-7 (347.3 GHz) observations towards HH 212 using the ASTE telescope. Our observations with a 22-diameter beam show that the SiO emission is highly concentrated within 1 of the driving source. We carefully compare the SiO observation s with archival H_2 1-0 S(1) images and published H_2 echelle spectra. We find that, although the SiO velocities closely match the radial velocities seen in H_2, the distribution of H_2 and SiO emission differ markedly. We attribute the latter to the different excitation conditions required for H_2 and SiO emission, particularly the higher critical density (n_H2 ~10^8 cm^-3) of the SiO J=8-7 emission. The kinematic similarities imply that the H_2 and SiO are associated with the same internal working surfaces. We conclude that the SiO J=8-7 emission has a potential to probe the jet/wind launching region through interferometric observations in the future, particularly for the youngest, most deeply embedded protostars where IR observations are not possible.
HH 211 is a highly collimated jet originating from a nearby young Class 0 protostar. Here is a follow-up study of the jet with our previous observations at unprecedented resolution up to ~ 0.3 in SiO (J=8-7), CO (J=3-2), and SO (N_J=8_9-7_8). SiO, CO , and SO can all be a good tracer of the HH 211 jet, tracing the internal shocks in the jet. Although the emissions of these molecules show roughly the same morphology of the jet, there are detailed differences. In particular, the CO emission traces the jet closer to the source than the SiO and SO emissions. In addition, in the better resolved internal shocks, both the CO and SO emission are seen slightly ahead of the SiO emission. The jet is clearly seen on both sides of the source with more than one cycle of wiggle. The wiggle is reflection-symmetric about the source and can be reasonably fitted by an orbiting source jet model. The best-fit parameters suggest that the source itself could be a very low-mass protobinary with a total mass of ~ 60 M_Jup and a binary separation of ~ 4.6 AU. The abundances of SiO and SO in the gas phase are found to be highly enhanced in the jet as compared to the quiescent molecular clouds, even close to within 300 AU from the source where the dynamical time scale is <10 yrs. The abundance enhancements of these molecules are closely related to the internal shocks. The detected SiO is either the consequence of the release of Si-bearing material from dust grains or of its formation via gas chemistry in the shocks. The SO, on the other hand, seems to form via gas chemistry in the shocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا