ﻻ يوجد ملخص باللغة العربية
The central problem in forming a star is the angular momentum in the circumstellar disk which prevents material from falling into the central stellar core. An attractive solution to the angular momentum problem appears to be the ubiquitous (low-velocity and poorly-collimated) molecular outflows and (high-velocity and highly-collimated) protostellar jets accompanying the earliest phase of star formation that remove angular momentum at a range of disk radii. Previous observations suggested that outflowing material carries away the excess angular momentum via magneto-centrifugally driven winds from the surfaces of circumstellar disks down to ~ 10 AU scales, allowing the material in the outer disk to transport to the inner disk. Here we show that highly collimated protostellar jets remove the residual angular momenta at the ~ 0.05 AU scale, enabling the material in the innermost region of the disk to accrete toward the central protostar. This is supported by the rotation of the jet measured down to ~ 10 AU from the protostar in the HH 212 protostellar system. The measurement implies a jet launching radius of ~ 0.05_{-0.02}^{+0.05} AU on the disk, based on the magneto-centrifugal theory of jet production, which connects the properties of the jet measured at large distances to those at its base through energy and angular momentum conservation.
The recently discovered protostellar jet known as HH212 is beautifully symmetric, with a series of paired shock knots and bow shocks on either side of the exciting source region, IRAS 05413-0104 (Zinnecker et al. 1998). We present VLA ammonia maps of
HH 212 is one of the well-studied protostellar systems, showing the first vertically resolved disk with a warm atmosphere around the central protostar. Here we report a detection of 9 organic molecules (including newly detected ketene, formic acid, d
We present Spitzer (IRAC) images observations and a VLT 2.1micron image of the HH 212 outflow. We find that this outflow has a strong symmetry, with jet/counterjet knot pairs with Delta x less than 1 arcsec position offsets. We deduce that the jet/co
We report new dust polarization results of a nearly edge-on disk in the HH 212 protostellar system, obtained with ALMA at ~ 0.035 (14 au) resolution in continuum at lambda ~ 878 um. Dust polarization is detected within ~ 44 au of the central source,
HH 212 is a Class 0 protostellar system found to host a hamburger-shaped dusty disk with a rotating disk atmosphere and a collimated SiO jet at a distance of ~ 400 pc. Recently, a compact rotating outflow has been detected in SO and SO2 toward the ce