ترغب بنشر مسار تعليمي؟ اضغط هنا

The jet/counter-jet symmetry of the HH 212 outflow

68   0   0.0 ( 0 )
 نشر من قبل Alberto Noriega-Crespo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Noriega-Crespo




اسأل ChatGPT حول البحث

We present Spitzer (IRAC) images observations and a VLT 2.1micron image of the HH 212 outflow. We find that this outflow has a strong symmetry, with jet/counterjet knot pairs with Delta x less than 1 arcsec position offsets. We deduce that the jet/counterjet knots are ejected with time differences Delta tau_0 approx. 6 yr and velocity differences Delta v_0~ 2 km/s. We also analyze the deviations of the knot positions perpendicular to the outflow axis, and interpret them in terms of a binary orbital motion of the outflow source. Through this model, we deduce a ~0.7M_solar mass for the outflow source, and a separation of ~80 AU between the components of the binary (assuming equal masses for the two components). Finally, using the IRAC data and the VLT 2.1micron image we have measured the proper motion velocities, obtaining values from 50 to 170km/s.

قيم البحث

اقرأ أيضاً

The central problem in forming a star is the angular momentum in the circumstellar disk which prevents material from falling into the central stellar core. An attractive solution to the angular momentum problem appears to be the ubiquitous (low-veloc ity and poorly-collimated) molecular outflows and (high-velocity and highly-collimated) protostellar jets accompanying the earliest phase of star formation that remove angular momentum at a range of disk radii. Previous observations suggested that outflowing material carries away the excess angular momentum via magneto-centrifugally driven winds from the surfaces of circumstellar disks down to ~ 10 AU scales, allowing the material in the outer disk to transport to the inner disk. Here we show that highly collimated protostellar jets remove the residual angular momenta at the ~ 0.05 AU scale, enabling the material in the innermost region of the disk to accrete toward the central protostar. This is supported by the rotation of the jet measured down to ~ 10 AU from the protostar in the HH 212 protostellar system. The measurement implies a jet launching radius of ~ 0.05_{-0.02}^{+0.05} AU on the disk, based on the magneto-centrifugal theory of jet production, which connects the properties of the jet measured at large distances to those at its base through energy and angular momentum conservation.
The recently discovered protostellar jet known as HH212 is beautifully symmetric, with a series of paired shock knots and bow shocks on either side of the exciting source region, IRAS 05413-0104 (Zinnecker et al. 1998). We present VLA ammonia maps of the IRAS 05413-0104 molecular gas envelope in which the protostellar jet source is embedded. We find that the envelope, with mass of 0.2 M(sun) detected by the interferometer, is flattened perpendicular to the jet axis with a FWHM diameter of 12000 AU and an axis ratio of 2:1, as seen in NH3 (1,1) emission. There is a velocity gradient of about 4-5 km sec^-1 pc^-1 across the flattened disk-like core, suggestive of rotation around an axis aligned with the jet. Flux-weighted mean velocities increase smoothly with radius with a roughly constant velocity gradient. In young (Class 0) systems such as HH212, a significant amount of material is still distributed in a large surrounding envelope, and thus the observable kinematics of the system may reflect the less centrally condensed, youthful state of the source and obscuration of central dynamics. The angular momentum of this envelope material may be released from infalling gas through rotation in the HH212 jet, as recent observations suggest (Davis et al. 2000). A blue-shifted wisp or bowl of emitting gas appears to be swept up along the blue side of the outflow, possibly lining the cavity of a wider angle wind around the more collimated shock jet axis. Our ammonia (2,2)/(1,1) ratio map indicates that this very cold core is heated to 14 Kelvin degrees in a centrally condensed area surrounding the jet source. This edge-on core and jet system appears to be young and deeply embedded. This environment, however, is apparently not disrupting the pristine symmetry and collimation of the jet.
We present SiO J=8-7 (347.3 GHz) observations towards HH 212 using the ASTE telescope. Our observations with a 22-diameter beam show that the SiO emission is highly concentrated within 1 of the driving source. We carefully compare the SiO observation s with archival H_2 1-0 S(1) images and published H_2 echelle spectra. We find that, although the SiO velocities closely match the radial velocities seen in H_2, the distribution of H_2 and SiO emission differ markedly. We attribute the latter to the different excitation conditions required for H_2 and SiO emission, particularly the higher critical density (n_H2 ~10^8 cm^-3) of the SiO J=8-7 emission. The kinematic similarities imply that the H_2 and SiO are associated with the same internal working surfaces. We conclude that the SiO J=8-7 emission has a potential to probe the jet/wind launching region through interferometric observations in the future, particularly for the youngest, most deeply embedded protostars where IR observations are not possible.
79 - Rosario Lopez 2004
We present new results on the kinematics of the jet HH 110. New proper motion measurements have been calculated from [SII] CCD images obtained with a time baseline of nearly fifteen years. HH 110 proper motions show a strong asymmetry with respect to the outflow axis, with a general trend of pointing towards the west of the axis direction. Spatial velocities have been obtained by combining the proper motions and radial velocities from Fabry-Perot data. Velocities decrease by a factor ~3 over a distance of ~10$^{18}$ cm, much shorter than the distances expected for the braking caused by the jet/environment interaction. Our results show evidence of an anomalously strong interaction between the outflow and the surrounding environment, and are compatible with the scenario in which HH 110 emerges from a deflection in a jet/cloud collision.
169 - A. Riera , A.C. Raga , B. Reipurth 2003
We have obtained a Halpha position-velocity cube from Fabry-Perot interferometric observations of the HH 110 flow. We analyze the results in terms of anisotropic wavelet transforms, from which we derive the spatial distribution of the knots as well a s their characteristic sizes (along and across the outflow axis). We then study the spatial behaviour of the line width and the central radial velocity. The results are interpreted in terms of a simple ``mean flow+turbulent eddy jet/wake model. We find that most of the observed kinematics appear to be a direct result of the mean flow, on which are superposed low amplitude (35 km/s) turbulent velocities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا