ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Fast Spectral Variability of GRBs

96   0   0.0 ( 0 )
 نشر من قبل Valentin Pal'shin
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E.P. Mazets




اسأل ChatGPT حول البحث

Fast spectral variability of gamma-ray burst emission is considered for a number of events seen by the Konus-Wind experiment. The variability manifests itself as a strong correlation between instantaneous energy flux $F$ and peak energy $E_p$. In the ($F,E_p$) plane, the correlation produces distinct tracks in the form of branches and loops representing the different parts of a burst time history. Despite the variety of features seen in different events, the main characteristics of the spectral evolution produce a quite consistent pattern.



قيم البحث

اقرأ أيضاً

The Swift satellite has observed more than a thousand GRBs with X-ray data. Almost a third of them have redshift measurement, too. Here we start to investigate the X-ray spectral fitting of the data considering the low energy part where the N(H) abso rption happens. Based on the available more accurate input data we examined the robustness of previous fittings and tested how sensitive the changes of the starting parameters are. We studied the change of the intrinsic hydrogen column density during the outburst for a few events. No significant variability of N(H) column density was identified.
110 - Minfeng Gu 2011
The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82 region are investigated by using DR7 released multi-epoch data. All FSRQs show variations with overall amplitude ranging from 0.24 mag to 3.46 mag in different sources. About half of FSRQs show a bluer-when-brighter trend, which is commonly observed for blazars. However, only one source shows a redder-when-brighter trend, which implies it is rare in FSRQs. In this source, the thermal emission may likely be responsible for the spectral behavior.
We report the discovery of large-amplitude mid-infrared variabilities (MIR; $sim 0.3$ mag) in the Wide-field Infrared Survey Explorer W1 and W2 bands of the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007, which exhibits prominent and varying br oad-absorption lines (BALs) with blueshifted velocity up to $rm sim 14000 km s^{-1}$. The observed significant MIR variability, the UV to optical color variabilities in the Swift bands that deviate from the predictions of pure dust attenuation models, and the fact that Swift light curves can be well fitted by the stochastic AGN variability model suggest that its observed flux variabilities in UV-optical-MIR bands should be intrinsic, rather than owing to variable dust extinction. Furthermore, the variations of BAL features (i.e., trough strength and maximum velocity) and continuum luminosity are concordant. Therefore, we propose that the BAL variability observed in WPVS 007 is likely induced by the intrinsic ionizing continuum variation, alternative to the rotating-torus model proposed in a previous work. The BAL gas in WPVS 007 might be in the low-ionization state as traced by its weak N V BAL feature; as the ionizing continuum strengthens, the Ci IV and Si IV column densities also increase, resulting in stronger BALs and the emergence of high-velocity components of the outflow. The outflow launch radius might be as small as $sim 8 times 10^{-4}$ pc under the assumption of being radiatively driven, but a large-scale origin (e.g., torus) cannot be fully excluded because of the unknown effects from additional factors, e.g., the magnetic field.
We present the first results of a program to systematically study the optical-to-X-ray spectral energy distribution (SED) of Swift GRB afterglows with known redshift. The goal is to study the properties of the GRB explosion and of the intervening abs orbing material. In this report we present the preliminary analysis on 23 afterglows. Thanks to Swift, we could build the SED at early times after the GRB (minutes to hours). We derived the Hydrogen column densities and the spectral slopes from the X-ray spectrum. We then constrained the visual extinction by requiring that the combined optical/X-ray SED is due to synchrotron, namely either a single power law or a broken power law with a slope change by 0.5. We confirm a low dust-to-metal ratio, smaller than in the SMC, even from the analysis of data taken significantly earlier than previously possible. Our analysis does not support the existence of ``grey dust. We also find that the synchrotron spectrum works remarkably well to explain afterglow SEDs. We clearly see, however, that during the X-ray steep decay phases and the flares, the X-ray radiation cannot be due only to afterglow emission.
We have investigated the time variations in the light curves from a sample of long and short Fermi/GBM Gamma ray bursts (GRBs) using an impartial wavelet analysis. The results indicate that in the source frame, the variability time scales for long bu rsts differ from that for short bursts, that variabilities on the order of a few milliseconds are not uncommon, and that an intriguing relationship exists between the minimum variability time and the burst duration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا