ﻻ يوجد ملخص باللغة العربية
We present the first results of a program to systematically study the optical-to-X-ray spectral energy distribution (SED) of Swift GRB afterglows with known redshift. The goal is to study the properties of the GRB explosion and of the intervening absorbing material. In this report we present the preliminary analysis on 23 afterglows. Thanks to Swift, we could build the SED at early times after the GRB (minutes to hours). We derived the Hydrogen column densities and the spectral slopes from the X-ray spectrum. We then constrained the visual extinction by requiring that the combined optical/X-ray SED is due to synchrotron, namely either a single power law or a broken power law with a slope change by 0.5. We confirm a low dust-to-metal ratio, smaller than in the SMC, even from the analysis of data taken significantly earlier than previously possible. Our analysis does not support the existence of ``grey dust. We also find that the synchrotron spectrum works remarkably well to explain afterglow SEDs. We clearly see, however, that during the X-ray steep decay phases and the flares, the X-ray radiation cannot be due only to afterglow emission.
We study the observed correlations between the duration and luminosity of the early afterglow plateau and the isotropic gamma-ray energy release during the prompt phase. We discuss these correlations in the context of two scenarios for the origin of
We present an analysis of early BAT and XRT data for 107 gamma--ray bursts (GRBs) observed by the Swift satellite. We use these data to examine the behaviour of the X-ray light curve and propose a classification scheme for GRBs based on this behaviou
We present results of Swift optical, UV and X-ray observations of the afterglow of GRB 050801. The source is visible over the full optical, UV and X-ray energy range of the Swift UVOT and XRT instruments.Both optical and X-ray lightcurves exhibit a b
Here we describe an autonomous way of producing more accurate prompt XRT positions for Swift-detected GRBs and their afterglows, based on UVOT astrometry and a detailed mapping between the XRT and UVOT detectors. The latter significantly reduces the
We present the observations of GRB090510 performed by the Fermi Gamma-Ray Space Telescope and the Swift observatory. This is a bright, short burst that shows an extended emission detected in the GeV range. Furthermore, its optical emission initially