ﻻ يوجد ملخص باللغة العربية
We report the discovery of large-amplitude mid-infrared variabilities (MIR; $sim 0.3$ mag) in the Wide-field Infrared Survey Explorer W1 and W2 bands of the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007, which exhibits prominent and varying broad-absorption lines (BALs) with blueshifted velocity up to $rm sim 14000 km s^{-1}$. The observed significant MIR variability, the UV to optical color variabilities in the Swift bands that deviate from the predictions of pure dust attenuation models, and the fact that Swift light curves can be well fitted by the stochastic AGN variability model suggest that its observed flux variabilities in UV-optical-MIR bands should be intrinsic, rather than owing to variable dust extinction. Furthermore, the variations of BAL features (i.e., trough strength and maximum velocity) and continuum luminosity are concordant. Therefore, we propose that the BAL variability observed in WPVS 007 is likely induced by the intrinsic ionizing continuum variation, alternative to the rotating-torus model proposed in a previous work. The BAL gas in WPVS 007 might be in the low-ionization state as traced by its weak N V BAL feature; as the ionizing continuum strengthens, the Ci IV and Si IV column densities also increase, resulting in stronger BALs and the emergence of high-velocity components of the outflow. The outflow launch radius might be as small as $sim 8 times 10^{-4}$ pc under the assumption of being radiatively driven, but a large-scale origin (e.g., torus) cannot be fully excluded because of the unknown effects from additional factors, e.g., the magnetic field.
We report the discovery of an occultation event in the low-luminosity narrow-line Seyfert 1 galaxy WPVS 007 in 2015 February and March. In concert with longer timescale variability, these observations place strong constraints on the nature and locati
We report on multi-wavelength observations of the X-ray transient Narrow Line Seyfert 1 (NLS1) galaxy WPVS 007. The galaxy was monitored with Swift between October 2005 and July 2013, after it had undergone a dramatic drop in its X-ray flux earlier.
We report on the discovery of a dramatic X-ray spectral variability event observed in a $zsim 1$ broad line type-1 QSO. The XMM-Newton spectrum from the year 2000 is characterized by an unobscured power-law spectrum with photon index of $Gammasim 2$,
The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82 region are investigated by using DR7 released multi-epoch data. All FSRQs show variations with overall amplitude ranging from 0.24 mag to 3.46 mag in different sources. About
Fast spectral variability of gamma-ray burst emission is considered for a number of events seen by the Konus-Wind experiment. The variability manifests itself as a strong correlation between instantaneous energy flux $F$ and peak energy $E_p$. In the