ﻻ يوجد ملخص باللغة العربية
In this paper we show that, within the framework of the QSSC, the small scale deviations on angular scales $lesssim 1^{0}$ expected in the MBR are due to inhomogeneities in the distribution of galaxies and clusters. It is shown how these can be estimated on the galaxy-cluster-supercluster scale at the epoch of redshift $sim 5$ when the universe was last passing through the minimum phase of the scale factor. Rich clusters on the scale of 5-10 Mpc generate the kind of peak in the fluctuation power spectrum observed by the Boomrang and Maxima projects. Weaker inhomogeneities on smaller scales with $l~sim 10^3$ are expected to arise from individual galaxies and small groups.
We calculate the expected angular power spectrum of the temperature fluctuations in the microwave background radiation (MBR) generated in the quasi-steady state cosmology (QSSC). The paper begins with a brief description of how the background is prod
A brief historical account of modern cosmology shows that the standard big bang (BB) model, believed by so many, does not have the strong observational foundations that are frequently claimed for it. The theory of the Quasi-Steady State Cosmology (QS
We present the main scientific goals and characteristics of the ESA Planck satellite mission, as well as the main features of the survey strategy and simulated performance in terms of measuring the temperature and polarization of the Cosmic Microwave Background fluctuations.
Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inf
Fluctuations in the brightness of the Earths atmosphere originating from water vapor are an important source of noise for ground-based instruments attempting to measure anisotropy in the Cosmic Microwave Background. This paper presents a model for th