ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Strings as the Source of Small-Scale Microwave Background Anisotropy

174   0   0.0 ( 0 )
 نشر من قبل Levon Pogosian
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic string networks generate cosmological perturbations actively throughout the history of the universe. Thus, the string sourced anisotropy of the cosmic microwave background is not affected by Silk damping as much as the anisotropy seeded by inflation. The spectrum of perturbations generated by strings does not match the observed CMB spectrum on large angular scales (l<1000) and is bounded to contribute no more than 10% of the total power on those scales. However, when this bound is marginally saturated, the anisotropy created by cosmic strings on small angular scales l>2000 will dominate over that created by the primary inflationary perturbations. This range of angular scales in the CMB is presently being measured by a number of experiments; their results will test this prediction of cosmic string networks soon.



قيم البحث

اقرأ أيضاً

We present results from the first simulations of networks of Type I Abelian Higgs cosmic strings to include both matter and radiation eras and Cosmic Microwave Background (CMB) constraints. In Type I strings, the string tension is a slowly decreasing function of the ratio of the scalar and gauge mass-squared, $beta$. We find that the mean string separation shows no dependence on $beta$, and that the energy-momentum tensor correlators decrease approximately in proportion to the square of the string tension, with additional O(1) correction factors which asymptote to constants below $beta lesssim 0.01$. Strings in models with low self-couplings can therefore satisfy current CMB bounds at higher symmetry-breaking scales. This is particularly relevant for models where the gauge symmetry is broken in a supersymmetric flat direction, for which the effective self-coupling can be extremely small. If our results can be extrapolated to $beta simeq 10^{-15}$, even strings formed at $10^{16}$ GeV (approximately the grand unification scale in supersymmetric extensions of the Standard Model) can be compatible with CMB constraints.
We report a search for signatures of cosmic strings in the the Cosmic Microwave Background data from the Wilkinson Microwave Anisotropy Probe. We used a digital filter designed to search for individual cosmic strings and found no evidence for them in the WMAP CMB anisotropies to a level of $Delta T/T sim 0.29$ mK. This corresponds to an absence of cosmic strings with $ Gmu ga 1.07 times 10^{-5}$ for strings moving with velocity $v = c/sqrt{2}$. Unlike previous work, this limit does not depend on an assumed string abundance. We have searched the WMAP data for evidence of a cosmic string recently reported as the CSL-1 object, and found an ``edge with 2$sigma$ significance. However, if this edge is real and produced by a cosmic string, it would have to move at velocity $ga$ 0.94c. We also present preliminary limits on the CMB data that will be returned by the PLANCK satellite for comparison. With the available information on the PLANCK satellite, we calculated that it would be twice as sensitive to cosmic strings as WMAP.
We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known - but which can be measured in future high-resolution numerical simulations.
Recent observations of the cosmic microwave background (CMB) have extended the measured power spectrum to higher multipoles $lgtrsim$1000, and there appears to be possible evidence for excess power on small angular scales. The primordial magnetic fie ld (PMF) can strongly affect the CMB power spectrum and the formation of large scale structure. In this paper, we calculate the CMB temperature anisotropies generated by including a power-law magnetic field at the photon last-scattering surface (PLSS). We then deduce an upper limit on the PMF based on our theoretical analysis of the power excess on small angular scales. We have taken into account several important effects such as the modified matter sound speed in the presence of a magnetic field. An upper limit to the field strength of $|B_lambda|lesssim$ 4.7 nG at the present scale of 1 Mpc is deduced. This is obtained by comparing the calculated theoretical result including the Sunyaev-Zeldovich (SZ) effect with recent observed data on the small-scale CMB anisotropies from the $Wilkinson Microwave Anisotropy Probe$ (WMAP), the Cosmic Background Imager (CBI), and the Arcminute Cosmology Bolometer Array Receiver (ACBAR). We discuss several possible mechanisms for the generation and evolution of the PMF.
62 - Pierre G. Auclair 2020
Numerical simulations and analytical models suggest that infinite cosmic strings produce cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law exponent are still matter of debate while numerical simulations do not incorporate all the radiation and back-reaction effects expected to affect the network at small scales. Previously it has been shown, using a Boltzmann approach, that depending on the steepness of the loop production function and the gravitational back-reaction scale, a so-called Extra Population of Small Loops (EPSL) can be generated in the loop number density. We propose a framework to study the influence of this extra population of small loops on the Stochastic Background of Gravitational Waves (SBGW). We show that this extra population can have a significant signature at frequencies higher than $H_0(Gamma Gmu)^{-1}$ where $Gamma$ is of order $50$ and $H_0$ is the Hubble constant. We propose a complete classification of the gravitational wave power spectra expected from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer and the model of Lorenz, Ringeval and Sakellariadou. Finally we show that given the uncertainties on the Polchinski-Rocha exponents, two hybrid classes of gravitational wave power spectrum can be considered giving very different predictions for the SBGW.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا