ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmology from Cosmic Microwave Background fluctuations with Planck

95   0   0.0 ( 0 )
 نشر من قبل Xavier Dupac
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف X. Dupac




اسأل ChatGPT حول البحث

We present the main scientific goals and characteristics of the ESA Planck satellite mission, as well as the main features of the survey strategy and simulated performance in terms of measuring the temperature and polarization of the Cosmic Microwave Background fluctuations.



قيم البحث

اقرأ أيضاً

The cosmic microwave background (CMB) has been a treasure trove for cosmology. Over the next decade, current and planned CMB experiments are expected to exhaust nearly all primary CMB information. To further constrain cosmological models, there is a great benefit to measuring signals beyond the primary modes. Rayleigh scattering of the CMB is one source of additional cosmological information. It is caused by the additional scattering of CMB photons by neutral species formed during recombination and exhibits a strong and unique frequency scaling ($propto u^4$). We will show that with sufficient sensitivity across frequency channels, the Rayleigh scattering signal should not only be detectable but can significantly improve constraining power for cosmological parameters, with limited or no additional modifications to planned experiments. We will provide heuristic explanations for why certain cosmological parameters benefit from measurement of the Rayleigh scattering signal, and confirm these intuitions using the Fisher formalism. In particular, observation of Rayleigh scattering allows significant improvements on measurements of $N_{rm eff}$ and $sum m_ u$.
132 - G. Burbidge 2008
In this talk I shall start by describing how we set about and carried out the work which led to the publication of B2FH in 1957. I then shall try and relate this work and the circumstances that surrounded it to the larger problem of the origin and fo rmation of the universe. Here it is necessary to look back at the way that ideas developed and how in many situations astronomers went astray. Of course this is a personal view, though I very strongly believe that if he were still here, it is the approach that Fred Hoyle would take. I start by describing the problems originally encountered by Gamow and his associates in trying to decide where the helium was made. This leads me to a modern discussion of the origin of 2D, 3He, 4He and 7Li, originally described by B2FH as due to the x-process. While it is generally argued, following Gamow, Alpher, and Herman, that these isotopes were synthesized in a big bang I shall show that it is equally likely that these isotopes were made in active galactic nuclei, as was the cosmic microwave background (CMB), in a cyclic universe model. The key piece of observational evidence is that the amount of energy carried by the CMB, namely about 4.5 x 10-13 erg cm-3
We compute analytically the small-scale temperature fluctuations of the cosmic microwave background from cosmic (super-)strings and study the dependence on the string intercommuting probability $P$. We develop an analytical model which describes the evolution of a string network and calculate the numbers of string segments and kinks in a horizon volume. Then we derive the probability distribution function (pdf) which takes account of finite angular resolution of observation. The resultant pdf consists of a Gaussian part due to frequent scatterings by long string segments and a non-Gaussian tail due to close encounters with kinks. The dispersion of the Gaussian part is reasonably consistent with that obtained by numerical simulations by Fraisse et al.. On the other hand, the non-Gaussian tail contains two phenomenological parameters which are determined by comparison with the numerical results for P=1. Extrapolating the pdf to the cases with $P<1$, we predict that the non-Gaussian feature is suppressed for small $P$.
We present simulations of different scanning strategies for the Planck satellite. We review the properties of slow- and fast-precession strategies in terms of uniformity of the integration time on the sky, the presence of low-redundancy areas, the pr esence of deep fields, the presence of sharp gradients in the integration time, and the redundancy of the scanning directions. We also compare the results obtained when co-adding all detectors of a given frequency channel. The slow-precession strategies allow a good uniformity of the coverage, while providing two deep fields. On the other hand, they do not allow a wide spread of the scan-crossing directions, which is a feature of the fast-precession strategies. However, the latter suffer from many sharp gradients and low-coverage areas on the sky. On the basis of these results, the strategy for Planck can be selected to be a slow (e.g. 4 month-period) sinusoidal or cycloidal scanning.
Voyage 2050 White Paper highlighting the unique science opportunities using spectral distortions of the cosmic microwave background (CMB). CMB spectral distortions probe many processes throughout the history of the Universe. Precision spectroscopy, p ossible with existing technology, would provide key tests for processes expected within the cosmological standard model and open an enormous discovery space to new physics. This offers unique scientific opportunities for furthering our understanding of inflation, recombination, reionization and structure formation as well as dark matter and particle physics. A dedicated experimental approach could open this new window to the early Universe in the decades to come, allowing us to turn the long-standing upper distortion limits obtained with COBE/FIRAS some 25 years ago into clear detections of the expected standard distortion signals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا