ترغب بنشر مسار تعليمي؟ اضغط هنا

Absorption Systems in the Spectra of 66 z > 4 Quasars

127   0   0.0 ( 0 )
 نشر من قبل Celine Peroux
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Celine Peroux




اسأل ChatGPT حول البحث

We present high signal-to-noise, 5 A resolution (FWHM) spectra of 66 z ga 4 bright quasars obtained with the 4 m Cerro Tololo Inter-American Observatory and 4.2 m William Hershel telescopes. The primary goal of these observations was to undertake a new survey for intervening absorption systems detected in the spectra of background quasars. We look for both Lyman-limit systems (column densities N(HI) > 1.6 * 10^{17} atoms cm-2) and damped Ly-alpha systems (column densities N(HI) > 2 * 10^{20} atoms cm-2). This work resulted in the discovery of 49 Lyman-limit systems, 15 of which are within 3000 km s-1 of the quasar emission and thus might be associated with the quasar itself, 26 new damped Ly-alpha absorption candidates, 15 of which have z>3.5 and numerous metal absorption systems. In addition ten of the quasars presented here exhibit intrinsic broad absorption lines.



قيم البحث

اقرأ أيضاً

We use Keck/HIRES spectra of 37 optically bright quasars at z=2-4 to study narrow absorption lines that are intrinsic to the quasars (intrinsic NALs, produced in gas that is physically associated with the quasar central engine). We identify 150 NAL s ystems, that contain 124 C IV, 12 N V, and 50 Si IV doublets, of which 18 are associated systems (within 5,000 km/s of the quasar redshift). We use partial coverage analysis to separate intrinsic NALs from NALs produced in cosmologically intervening structures. We find 39 candidate intrinsic systems, (28 reliable determinations and 11 that are possibly intrinsic). We estimate that 10-17% of C IV systems at blueshifts of 5,000-70,000 km/s relative to quasars are intrinsic. At least 32% of quasars contain one or more intrinsic C IV NALs. Considering N V and Si IV doublets showing partial coverage as well, at least 50% of quasars host intrinsic NALs. This result constrains the solid angle subtended by the absorbers to the background source(s). We identify two families of intrinsic NAL systems, those with strong N V absorption, and those with negligible absorption in N V, but with partial coverage in the C IV doublet. We discuss the idea that these two families represent different regions or conditions in accretion disk winds. Of the 26 intrinsic C IV NAL systems, 13 have detectable low-ionization absorption lines at similar velocities, suggesting that these are two-phase structures in the wind rather than absorbers in the host galaxy. We also compare possible models for quasar outflows, including radiatively accelerated disk-driven winds, magnetocentrifugally accelerated winds, and pressure-driven winds, and we discuss ways of distinguishing between these models observationally.
The APM multicolor survey for bright z > 4 objects, covering 2500 deg^2 of sky to m(R)~19, resulted in the discovery of thirty-one quasars with z > 4. High signal-to-noise optical spectrophotometry at 5A resolution has been obtained for the twenty-ei ght quasars easily accessible from the northern hemisphere. These spectra have been surveyed to create new samples of high redshift Lyman-limit systems, damped Lyman-alpha absorbers, and metal absorption systems (e.g. CIV and MgII). In this paper we present the spectra, together with line lists of the detected absorption systems. The QSOs display a wide variety of emission and absorption line characteristics, with 5 exhibiting broad absorption lines and one with extremely strong emission lines (BR2248-1242). Eleven candidate damped Ly-alpha absorption systems have been identified covering the redshift range 2.8<z<4.4 (8 with z>3.5). An analysis of the measured redshifts of the high ionization emission lines with the low ionization lines shows them to be blueshifted by 430+/-60 km/s. In a previous paper (Storrie-Lombardi et. al. 1994) we discussed the redshift evolution of the Lyman limit systems catalogued here. In subsequent papers we will discuss the properties of the Ly-alpha forest absorbers and the redshift and column density evolution of the damped Ly-alpha absorbers.
81 - M. Vigotti 2003
We define a new complete sample of 13 optically-luminous radio quasars M_AB(1450 Angstrom) < -26.9 mag and log P_1.4 GHz(W/Hz) > 25.7 with redshift 3.8 < z < 4.5, obtained by cross-correlating the FIRST radio survey and the APM catalogue of POSS-I. W e measure the space density to be 1.0 +/- 0.3 /Gpc^3, a factor 1.9 +/- 0.7 smaller than the space density of similar quasars at z=2. Using a new measurement of the radio-loud fraction of quasars we find that at z=4 the total space density of quasars with M_AB(1450 Angstrom) < -26.9 is 7.4 +/- 2.6/Gpc^3. This is a factor 1.8 +/- 0.8 less than the space density at z=2, found by the 2dF quasar survey. This (z=2)/(z=4) ratio, consistent with that of the radio-loud quasars, is significantly different from the ratio of about 10 found for samples including lower-luminosity quasars. This suggests that the decline of the space density beyond z=2 is slower for optically-luminous quasars than for less-luminous ones.
With close pairs of quasars at different redshifts, a background quasar sightline can be used to study a foreground quasars environment in absorption. We use a sample of 650 projected quasar pairs to study the HI Lya absorption transverse to luminous , z~2 quasars at proper separations of 30kpc < R < 1Mpc. In contrast to measurements along the line-of-sight, regions transverse to quasars exhibit enhanced HI Lya absorption and a larger variance than the ambient intergalactic medium, with increasing absorption and variance toward smaller scales. Analysis of composite spectra reveals excess absorption characterized by a Lya equivalent width profile W = 2.3A (R/100kpc)^-0.46. We also observe a high (~60%) covering factor of strong, optically thick HI absorbers (HI column log NHI > 17.3) at separations R<200kpc, which decreases to ~20% at R~1Mpc, but still represents a significant excess over the cosmic average. This excess of optically thick absorption can be described by a quasar-absorber cross-correlation function xi_QA(r) = (r/r_0)^gamma with a large correlation length r_0 = 12.5+2.7-1.4 Mpc/h (comoving) and gamma = 1.68+0.14-0.30. The HI absorption measured around quasars exceeds that of any previously studied population, consistent with quasars being hosted by massive dark matter halos Mhalo~10^12.5 Msun at z~2.5. The environments of these massive halos are highly biased towards producing optically thick gas, and may even dominate the cosmic abundance of Lyman limit systems and hence the intergalactic opacity to ionizing photons at z~2.5. The anisotropic absorption around quasars implies the transverse direction is much less likely to be illuminated by ionizing radiation than the line-of-sight, which we interpret in terms of the same obscuration effects frequently invoked in unified models of active galactic nuclei.
We present the first large sample of absorption systems in paired QSOs consisting of 691 absorption systems in the spectra of 310 QSOs including 170 pairings. All these absorption systems have metal lines, usually C IV or Mg II. We see 17 cases of ab sorption in one line-of-sight within 200 km/s (1 Mpc) of absorption in the paired line-of-sight with the probability at least approx 50% at 100kpc, declining rapidly to 23% at 100 - 200 kpc. We detect clustering on 0.5Mpc scales and see a hint of the fingers of God redshift-space distortion. The distribution matches absorbers arising in galaxies at z=2 with a normal correlation function and systematic infall velocities but unusually low random pair-wise velocity differences. Absorption in gas flowing out from galaxies at a mean velocity of 250 km/s would produce vastly more elongation than we see. The UV absorption from fast winds that Adelberger et al. 2005 see in spectra of LBGs is not representative of the absorption that we see. Either the winds are confined to LBGs, or they can not extend to 40 kpc with large velocities, while continuing to make UV absorption we see, implying most metals were in place in the IGM long before z=2. Separately, when we examine the absorption seen when a sight line passes a second QSO, we see 19 absorbers within 400 km/s of the partner QSO. The probability of seeing absorption is approximately constant for impact parameters 0.1 - 1.5 Mpc. Perhaps we do not see a rapid rise in the probability at small impact parameters because the UV from QSOs destroys some absorbers near to the QSOs. The 3D distribution of 64 absorbers around 313 QSOs is to first order isotropic, with just a hint of the anisotropy expected if the QSO UV emission is beamed, or alternatively QSOs might emit UV isotropically but for a surprisingly short time of only 0.3Myr.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا