ﻻ يوجد ملخص باللغة العربية
With close pairs of quasars at different redshifts, a background quasar sightline can be used to study a foreground quasars environment in absorption. We use a sample of 650 projected quasar pairs to study the HI Lya absorption transverse to luminous, z~2 quasars at proper separations of 30kpc < R < 1Mpc. In contrast to measurements along the line-of-sight, regions transverse to quasars exhibit enhanced HI Lya absorption and a larger variance than the ambient intergalactic medium, with increasing absorption and variance toward smaller scales. Analysis of composite spectra reveals excess absorption characterized by a Lya equivalent width profile W = 2.3A (R/100kpc)^-0.46. We also observe a high (~60%) covering factor of strong, optically thick HI absorbers (HI column log NHI > 17.3) at separations R<200kpc, which decreases to ~20% at R~1Mpc, but still represents a significant excess over the cosmic average. This excess of optically thick absorption can be described by a quasar-absorber cross-correlation function xi_QA(r) = (r/r_0)^gamma with a large correlation length r_0 = 12.5+2.7-1.4 Mpc/h (comoving) and gamma = 1.68+0.14-0.30. The HI absorption measured around quasars exceeds that of any previously studied population, consistent with quasars being hosted by massive dark matter halos Mhalo~10^12.5 Msun at z~2.5. The environments of these massive halos are highly biased towards producing optically thick gas, and may even dominate the cosmic abundance of Lyman limit systems and hence the intergalactic opacity to ionizing photons at z~2.5. The anisotropic absorption around quasars implies the transverse direction is much less likely to be illuminated by ionizing radiation than the line-of-sight, which we interpret in terms of the same obscuration effects frequently invoked in unified models of active galactic nuclei.
We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick HI gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgala
We characterize the physical properties of the cool T ~10^4 K circumgalactic medium surrounding z ~2-3 quasar host galaxies, which are predicted to evolve into present day massive ellipticals. Using a statistical sample of 14 quasar pairs with projec
We survey the incidence and absorption strength of the metal-line transitions CII 1334 and CIV from the circumgalactic medium (CGM) surrounding z~2 quasars, which act as signposts for massive dark matter halos M_halo~10^12.5 Msun. On scales of the vi
If broad absorption line (BAL) quasars represent a high covering fraction evolutionary state (even if this is not the sole factor governing the presence of BALs), it is expected that they should show an excess of mid-infrared radiation compared to no
The intrinsic column density (NH) distribution of quasars is poorly known. At the high obscuration end of the quasar population and for redshifts z<1, the X-ray spectra can only be reliably characterized using broad-band measurements which extend to