ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal Absorption Systems in Spectra of Pairs of QSOs

273   0   0.0 ( 0 )
 نشر من قبل Tridivesh Jena
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first large sample of absorption systems in paired QSOs consisting of 691 absorption systems in the spectra of 310 QSOs including 170 pairings. All these absorption systems have metal lines, usually C IV or Mg II. We see 17 cases of absorption in one line-of-sight within 200 km/s (1 Mpc) of absorption in the paired line-of-sight with the probability at least approx 50% at 100kpc, declining rapidly to 23% at 100 - 200 kpc. We detect clustering on 0.5Mpc scales and see a hint of the fingers of God redshift-space distortion. The distribution matches absorbers arising in galaxies at z=2 with a normal correlation function and systematic infall velocities but unusually low random pair-wise velocity differences. Absorption in gas flowing out from galaxies at a mean velocity of 250 km/s would produce vastly more elongation than we see. The UV absorption from fast winds that Adelberger et al. 2005 see in spectra of LBGs is not representative of the absorption that we see. Either the winds are confined to LBGs, or they can not extend to 40 kpc with large velocities, while continuing to make UV absorption we see, implying most metals were in place in the IGM long before z=2. Separately, when we examine the absorption seen when a sight line passes a second QSO, we see 19 absorbers within 400 km/s of the partner QSO. The probability of seeing absorption is approximately constant for impact parameters 0.1 - 1.5 Mpc. Perhaps we do not see a rapid rise in the probability at small impact parameters because the UV from QSOs destroys some absorbers near to the QSOs. The 3D distribution of 64 absorbers around 313 QSOs is to first order isotropic, with just a hint of the anisotropy expected if the QSO UV emission is beamed, or alternatively QSOs might emit UV isotropically but for a surprisingly short time of only 0.3Myr.



قيم البحث

اقرأ أيضاً

225 - Patrick Petitjean 1998
Molecules dominate the cooling function of neutral metal-poor gas at high density. Observation of molecules at high redshift is thus an important tool toward understanding the physical conditions prevailing in collapsing gas. Up to now, detections ar e sparse because of small filling factor and/or sensitivity limitations. However, we are at an exciting time where new capabilities offer the propect of a systematic search either in absorption using the UV Lyman-Werner H2 bands or in emission using the CO emission lines redshifted in the sub-millimeter.
Time-resolved spectroscopy provides the main tool for analyzing the dynamics of excitonic energy transfer in light-harvesting complexes. To infer time-scales and effective coupling parameters from experimental data requires to develop numerical exact theoretical models. The finite duration of the laser-molecule interactions and the reorganization process during the exciton migration affect the location and strength of spectroscopic signals. We show that the non-perturbative hierarchical equations of motion (HEOM) method captures these processes in a model exciton system, including the charge transfer state.
126 - Celine Peroux 2001
We present high signal-to-noise, 5 A resolution (FWHM) spectra of 66 z ga 4 bright quasars obtained with the 4 m Cerro Tololo Inter-American Observatory and 4.2 m William Hershel telescopes. The primary goal of these observations was to undertake a n ew survey for intervening absorption systems detected in the spectra of background quasars. We look for both Lyman-limit systems (column densities N(HI) > 1.6 * 10^{17} atoms cm-2) and damped Ly-alpha systems (column densities N(HI) > 2 * 10^{20} atoms cm-2). This work resulted in the discovery of 49 Lyman-limit systems, 15 of which are within 3000 km s-1 of the quasar emission and thus might be associated with the quasar itself, 26 new damped Ly-alpha absorption candidates, 15 of which have z>3.5 and numerous metal absorption systems. In addition ten of the quasars presented here exhibit intrinsic broad absorption lines.
We have embarked upon a project to model the UV spectra of BALQSOs using a Monte Carlo radiative transfer code previously validated through modelling of the winds of cataclysmic variable stars (e.g. Noebauer et al. 2010). We intend to use the simulat ions to investigate the plausibility of geometric unification (e.g. Elvis 2000) of the different classes of QSO. Here we introduce the code, and present some initial results. These demonstrate that for reasonable geometries and mass loss rates we are able to produce synthetic spectra which reproduce the important features of observed BALQSO spectra.
We present the results of a MgII absorption-line survey using QSO spectra from the SDSS EDR. Over 1,300 doublets with rest equivalent widths greater than 0.3AA and redshifts $0.366 le z le 2.269$ were identified and measured. We find that the $lambda 2796$ rest equivalent width ($W_0^{lambda2796}$) distribution is described very well by an exponential function $partial N/partial W_0^{lambda2796} = frac{N^*}{W^*} e^{-frac{W_0}{W^*}}$, with $N^*=1.187pm0.052$ and $W^*=0.702pm0.017$AA. Previously reported power law fits drastically over-predict the number of strong lines. Extrapolating our exponential fit under-predicts the number of $W_0 le 0.3$AA systems, indicating a transition in $dN/dW_0$ near $W_0 simeq 0.3$AA. A combination of two exponentials reproduces the observed distribution well, suggesting that MgII absorbers are the superposition of at least two physically distinct populations of absorbing clouds. We also derive a new redshift parameterization for the number density of $W_0^{lambda2796} ge 0.3$AA lines: $N^*=1.001pm0.132(1+z)^{0.226pm0.170}$ and $W^*=0.443pm0.032(1+z)^{0.634pm 0.097}$AA. We find that the distribution steepens with decreasing redshift, with $W^*$ decreasing from $0.80pm0.04$AA at $z=1.6$ to $0.59pm0.02$AA at $z=0.7$. The incidence of moderately strong MgII $lambda2796$ lines does not show evidence for evolution with redshift. However, lines stronger than $approx 2$AA show a decrease relative to the no-evolution prediction with decreasing redshift for $z lesssim 1$. The evolution is stronger for increasingly stronger lines. Since $W_0$ in saturated absorption lines is an indicator of the velocity spread of the absorbing clouds, we interpret this as an evolution in the kinematic properties of galaxies from moderate to low z.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا