ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Profile of Galactic Halos and Disk Formation

72   0   0.0 ( 0 )
 نشر من قبل James S. Bullock
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Dekel




اسأل ChatGPT حول البحث

We summarize recent developments in the study of the origin of halo spin profiles and preliminary implications on disk formation. The specific angular-momentum distributions within halos in N-body simulations match a universal shape, M(<j) propto j/(j_0+j). It is characterized by a power law over most of the mass, and one shape parameter in addition to the spin parameter lambda. The angular momentum tends to be aligned throughout the halo and of cylindrical symmetry. Even if angular momentum is conserved during baryonic infall, the resultant disk density profile is predicted to deviate from exponential, with a denser core and an extended tail. A slightly corrected version of the scaling relation due to linear tidal-torque theory is used to explain the origin of a typical power-law profile in shells, j(M) propto M^s with s gsim 1. While linear theory crudely predicts the amplitudes of halo spins, it is not a good predictor of their directions. Independently, mergers of halos are found to produce a similar profile due to j transfer from the orbit to the product halo via dynamical friction and tidal stripping. The halo spin is correlated with having a recent major merger, though this correlation is weakened by mass loss. These two effects are due to a correlation between the spins of neighboring halos and their orbit, leading to prograde mergers.

قيم البحث

اقرأ أيضاً

123 - James S. Bullock 2000
[Abridged] We study the angular-momentum profiles of a statistical sample of halos drawn from a high-resolution N-body simulation of the LCDM cosmology. We find that the cumulative mass distribution of specific angular momentum, j, in a halo of mass Mv is well fit by a universal function, M(<j) = Mv mu j/(j_0+j). This profile is defined by one shape parameter (mu or j_0) in addition to the global spin parameter lambda. It follows a power-law over most of the mass, and flattens at large j, with the flattening more pronounced for small values of mu. Compared to a uniform sphere in solid-body rotation, most halos have a higher fraction of their mass in the low- and high-j tails of the distribution. The spatial distribution of angular momentum in halos tends to be cylindrical and is well-aligned within each halo for ~80% of the halos. We investigate two ideas for the origin of this profile. The first is based on a revised version of linear tidal-torque theory combined with extended Press-Schechter mass accretion, and the second focuses on j transport in minor mergers. Finally, we briefly explore implications of the M(<j) profile on the formation of galactic disks assuming that j is conserved during an adiabatic baryonic infall. The implied gas density profile deviates from an exponential disk, with a higher density at small radii and a tail extending to large radii. The steep central density profiles may imply disk scale lengths that are smaller than observed. This is reminiscent of the angular-momentum problem seen in hydrodynamic simulations, even though we have assumed perfect j conservation. A possible solution is to associate the central excesses with bulge components and the outer regions with extended gaseous disks.
Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the classical limits of the stellar disk. This paper reviews results from our own and other observational programs, which together suggest tha t, despite their extreme positions, the stars in these structures were formed in our Galactic disk. Mounting evidence from recent observations and simulations implies kinematic connections between several of these distinct structures. This suggests the existence of collective disk oscillations that can plausibly be traced all the way to asymmetries seen in the stellar velocity distribution around the Sun. There are multiple interesting implications of these findings: they promise new perspectives on the process of disk heating, they provide direct evidence for a stellar halo formation mechanism in addition to the accretion and disruption of satellite galaxies, and, they motivate searches of current and near-future surveys to trace these oscillations across the Galaxy. Such maps could be used as dynamical diagnostics in the emerging field of Galactoseismology, which promises to model the history of interactions between the Milky Way and its entourage of satellites, as well examine the density of our dark matter halo. As sensitivity to very low surface brightness features around external galaxies increases, many more examples of such disk oscillations will likely be identified. Statistical samples of such features not only encode detailed information about interaction rates and mergers, but also about long sought-after dark matter halo densities and shapes. Models for the Milky Ways own Galactoseismic history will therefore serve as a critical foundation for studying the weak dynamical interactions of galaxies across the universe.
Strong mass loss off stars at the tip of the asymptotic giant branch (AGB) profoundly affects properties of these stars and their surroundings, including the subsequent planetary nebula (PN) stage. With this study we wanted to determine physical prop erties of mass loss by studying weakly emitting halos, focusing on objects in the galactic disk. Halos surround the, up to several thousand times, brighter central regions of PNe. Young halos, specifically, still contain information of the preceeding final mass loss stage on the AGB. In the observations we used the method of integral field spectroscopy with the PMAS instrument. This is the first committed study of halos of PNe that uses this technique. We improved our data analysis by a number of steps. In a study of the influence of scattered light we found that a moderate fraction of intensities in the inner halo originate in adjacent regions. As we combine line intensities of distant wavelengths, and because radial intensity gradients are steep, we corrected for effects of differential atmospheric refraction. In order to increase the signal-to-noise of weak emission lines we introduced a dedicated method to bin spectra of individual spatial elements. We also developed a general technique to subtract telluric lines - without using separate sky exposures. By these steps we avoided introducing errors of several thousand Kelvin to our temperature measurements in the halo. For IC3568 we detected a halo. For M2-2 we found a halo radius that is 2.5 times larger... (abridged)
We perform N-Body/SPH simulations of disk galaxy formation inside equilibrium spherical and triaxial cuspy dark matter halos. We systematically study the disk properties and morphology as we increase the numbers of dark matter and gas particles from 10^4 to 10^6 and change the force resolution. The force resolution influences the morphological evolution of the disk quite dramatically. Unless the baryon fraction is significantly lower than the universal value, with high force resolution a gaseous bar always forms within a billion years after allowing cooling to begin. The bar interacts with the disk, transferring angular momentum and increasing its scale length. In none of the simulations does the final mass distribution of the baryons obey a single exponential profile. Indeed within a few hundred parsecs to a kiloparsec from the center the density rises much more steeply than in the rest of the disk, and this is true irrespective of the presence of the bar.
We present a kinematic analysis of a sample of 23,908 G- and K-type dwarfs in the Galactic disk. Based on the $alpha$-abundance ratio, [$alpha$/Fe], we separated our sample into low-$alpha$ thin-disk and high-$alpha$ thick-disk stars. We find a $V_{r m phi}$ gradient of $-$28.2 km s$^{-1}$ dex$^{-1}$ over [Fe/H] for the thin disk, and an almost flat trend of the velocity dispersions of $V_{rm R}$, $V_{rm phi}$, and $V_{rm Z}$ components with [Fe/H]. The metal-poor (MP; [Fe/H] $<$ $-$0.3) thin-disk stars with low-$V_{rm phi}$ velocities have high eccentricities ($e$) and small perigalacticon distances ($r_{rm p}$), while the high-$V_{rm phi}$ MP thin-disk stars possess low $e$ and large $r_{rm p}$. Interestingly, half of the super metal-rich ([Fe/H] $>$ $+$0.1) stars in the thin disk exhibit low-$e$, solar-like orbits. Accounting for the inhomogeneous metallicity distribution of the thin-disk stars with various kinematics requires radial migration by churning $-$ it apparently strongly influences the current structure of the thin disk; we cannot rule out the importance of blurring for the high-$e$ stars. We derive a rotation velocity gradient of $+$36.9 km s$^{-1}$ dex$^{-1}$ for the thick disk, and decreasing trends of velocity dispersions with increasing [Fe/H]. The thick-disk population also has a broad distribution of eccentricity, and the number of high-$e$ stars increases with decreasing [Fe/H]. These kinematic behaviors could be the result of a violent mechanism, such as a gas-rich merger or the presence of giant turbulent clumps, early in the history of its formation. Dynamical heating by minor mergers and radial migration may also play roles in forming the current thick-disk structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا