ﻻ يوجد ملخص باللغة العربية
We report multi-epoch VLA H I absorption observations of the source 1741-038 (OT-068) before and during an extreme scattering event (ESE). Observations at four epochs, three during the ESE, were obtained. We find no changes in the equivalent width, maximum optical depth, or velocity of maximum optical depth during the ESE, but we do find a secular trend of decreasing maximum optical depth between our observations and ones by other observers a decade prior. The resulting limit on the H I column density change during the ESE for a structure with a spin temperature T_s is 6.4 x 10^{17} cm^{-2} (T_s/10 K). Tiny-scale atomic structures (TSAS), with a column density N_H ~ 3 x 10^{18} cm^{-2}, are ruled out marginally by this limit, though geometric arguments may allow this limit to be relaxed. Galactic halo molecular clouds, that are opaque in the H I line, cannot be excluded because the observed velocity range covers only 25% of their allowed velocity range.
Recent high spatial and spectral resolution investigations of the diffuse interstellar medium (ISM) have found significant evidence for small-scale variations in the interstellar gas on scales less than or equal to 1 pc. To better understand the natu
The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ~50 microarcsecond
We report a Karl G. Jansky Very Large Array (JVLA) search for redshifted CO(1-0) or CO(2-1) emission, and a Hubble Space Telescope Wide Field Camera~3 (HST-WFC3) search for rest-frame near-ultraviolet (NUV) stellar emission, from seven HI-selected ga
Extreme scattering events (ESEs) are distinctive fluctuations in the brightness of astronomical radio sources caused by occulting plasma lenses in the interstellar medium. The inferred plasma pressures of the lenses are $sim 10^3$ times the ambient p
We propose an explanation to the puzzling appearance of a wide blue absorption wing in the He I 10830A P-Cygni profile of the massive binary star Eta Carinae several months before periastron passage. Our basic assumption is that the colliding winds r