ﻻ يوجد ملخص باللغة العربية
Extreme scattering events (ESEs) are distinctive fluctuations in the brightness of astronomical radio sources caused by occulting plasma lenses in the interstellar medium. The inferred plasma pressures of the lenses are $sim 10^3$ times the ambient pressure, challenging our understanding of gas conditions in the Milky Way. Using a new survey technique, we have discovered an ESE while it was in progress. We report radio and optical follow-up observations. Modelling of the radio data demonstrates that the lensing structure is a density enhancement and that the lens is diverging, ruling out one of two competing physical models. Our technique will uncover many more ESEs, addressing a long-standing mystery of the small-scale gas structure of the Galaxy.
We report the discovery of an extreme X-ray flux rise (by a factor of > 20) of the weak-line quasar SDSS J153913.47+395423.4 (hereafter SDSS J1539+3954) at z = 1.935. SDSS J1539+3954 is the most-luminous object among radio-quiet type 1 AGNs where suc
Plasma lensing is the refraction of low-frequency electromagnetic rays due to free electrons in the interstellar medium. Although the phenomenon has a distinct similarity to gravitational lensing, particularly in its mathematical description, plasma
I describe two novel techniques originally devised to select strongly lensed quasar candidates in wide-field surveys. The first relies on outlier selection in optical and mid-infrared magnitude space; the second combines mid-infrared colour selection
A key challenge in mining social media data streams is to identify events which are actively discussed by a group of people in a specific local or global area. Such events are useful for early warning for accident, protest, election or breaking news.
We undertake a statistical analysis of the radial abundance distributions in the Galactic disk within a theoretical framework for Galactic chemical evolution which incorporates the influence of spiral arms. 1) The mean mass of oxygen ejected per core