ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of H{sc i}-absorption-selected galaxies at $z approx 4$

371   0   0.0 ( 0 )
 نشر من قبل Nissim Kanekar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a Karl G. Jansky Very Large Array (JVLA) search for redshifted CO(1-0) or CO(2-1) emission, and a Hubble Space Telescope Wide Field Camera~3 (HST-WFC3) search for rest-frame near-ultraviolet (NUV) stellar emission, from seven HI-selected galaxies associated with high-metallicity ([M/H]~$geq -1.3$) damped Ly$alpha$ absorbers (DLAs) at $zapprox 4$. The galaxies were earlier identified by ALMA imaging of their [CII]~158$mu$m emission. We also used the JVLA to search for CO(2-1) emission from the field of a low-metallicity ([M/H]~$=-2.47$) DLA at $zapprox 4.8$. No statistically significant CO emission is detected from any of the galaxies, yielding upper limits of $M_{mol}<(7.4 - 17.9)times 10^{10}times (alpha_{CO}/4.36) M_odot$ on their molecular gas mass. We detect rest-frame NUV emission from four of the seven [CII]~158$mu$m-emitting galaxies, the first detections of the stellar continuum from HI-selected galaxies at $zgtrsim 4$. The HST-WFC3 images yield typical sizes of the stellar continua of $approx 2-4$~kpc and inferred dust-unobscured star-formation rates (SFRs) of $approx 5.0-17.5 M_odot$/yr, consistent with, or slightly lower than, the total SFRs estimated from the far-infrared (FIR) luminosity. We further stacked the CO(2-1) emission signals of six [CII]~158$mu$m-emitting galaxies in the image plane. Our non-detection of CO(2-1) emission in the stacked image yields the limit $M_{mol}<4.1 times 10^{10}times (alpha_{CO}/4.36) M_odot$ on the average molecular gas mass of the six galaxies. Our molecular gas mass estimates and NUV SFR estimates in HI-selected galaxies at $zapprox 4$ are consistent with those of main-sequence galaxies with similar [CII]~158$mu$m and FIR luminosities at similar redshifts. However, the NUV emission in the HI-selected galaxies appears more extended than that in main-sequence galaxies at similar redshifts.



قيم البحث

اقرأ أيضاً

137 - Nissim Kanekar 2020
We have used the Atacama Large Millimeter/submillimeter Array (ALMA) to carry out a search for CO (3$-$2) or (4$-$3) emission from the fields of 12 high-metallicity ([M/H]~$geq -0.72$,dex) damped Lyman-$alpha$ absorbers (DLAs) at $z approx 1.7-2.6$. We detected CO emission from galaxies in the fields of five DLAs (two of which have been reported earlier), obtaining high molecular gas masses, $rm M_{mol} approx (1.3 - 20.7) times (alpha_{rm CO}/4.36) times 10^{10} ; M_odot$. The impact parameters of the CO emitters to the QSO sightline lie in the range $b approx 5.6-100$~kpc, with the three new CO detections having $b lesssim 15$~kpc. The highest CO line luminosities and inferred molecular gas masses are associated with the highest-metallicity DLAs, with [M/H]~$gtrsim -0.3$,dex. The high inferred molecular gas masses may be explained by a combination of a stellar mass-metallicity relation and a high molecular gas-to-stars mass ratio in high-redshift galaxies; the DLA galaxies identified by our CO searches have properties consistent with those of emission-selected samples. None of the DLA galaxies detected in CO emission were identified in earlier optical or near-IR searches and vice-versa; DLA galaxies earlier identified in optical/near-IR searches were not detected in CO emission. The high ALMA CO and C[{sc ii}]~158$mu$m detection rate in high-$z$, high-metallicity DLA galaxies has revolutionized the field, allowing the identification of dusty, massive galaxies associated with high-$z$ DLAs. The H{sc i}-absorption criterion identifying DLAs selects the entire high-$z$ galaxy population, including dusty and UV-bright galaxies, in a wide range of environments.
231 - Marcel Neeleman 2018
We report on a search for the [CII] 158 micron emission line from galaxies associated with four high-metallicity damped Ly-alpha absorbers (DLAs) at z ~ 4 using the Atacama Large Millimeter/sub-millimeter Array (ALMA). We detect [CII] 158 micron emis sion from galaxies at the DLA redshift in three fields, with one field showing two [CII] emitters. Combined with previous results, we now have detected [CII] 158 micron emission from five of six galaxies associated with targeted high-metallicity DLAs at z ~ 4. The galaxies have relatively large impact parameters, ~16 - 45 kpc, [CII] 158 micron line luminosities of (0.36 - 30) x 10^8 Lsun, and rest-frame far-infrared properties similar to those of luminous Lyman-break galaxies, with star-formation rates of ~7 - 110 Msun yr-1. Comparing the absorption and emission line profiles yields a remarkable agreement between the line centroids, indicating that the DLA traces gas at velocities similar to that of the [CII] 158 micron emission. This disfavors a scenario where the DLA arises from gas in a companion galaxy. These observations highlight ALMAs unique ability to uncover a high redshift galaxy population that has largely eluded detection for decades.
We report a Giant Metrewave Radio Telescope (GMRT) search for HI 21cm emission from a large sample of star-forming galaxies at $z approx 1.18 - 1.34$, lying in sub-fields of the DEEP2 Redshift Survey. The search was carried out by co-adding (stacking ) the HI 21cm emission spectra of 857 galaxies, after shifting each galaxys HI 21cm spectrum to its rest frame. We obtain the $3sigma$ upper limit S$_{rm{HI}} < 2.5 mu$Jy on the average HI 21cm flux density of the 857 galaxies, at a velocity resolution of $approx 315$ km s$^{-1}$. This yields the $3sigma$ constraint M$_{rm{HI}} < 2.1 times 10^{10} times left[Delta {rm V}/315 rm{km/s} right]^{1/2} textrm{M}_odot$ on the average HI mass of the 857 stacked galaxies, the first direct constraint on the atomic gas mass of galaxies at $z > 1$. The implied limit on the average atomic gas mass fraction (relative to stars) is ${rm M}_{rm GAS}/{rm M}_* < 0.5$, comparable to the cold molecular gas mass fraction in similar star-forming galaxies at these redshifts. We find that the cosmological mass density of neutral atomic gas in massive star-forming galaxies at $z approx 1.3$ is $Omega_{rm GAS} < 3.7 times 10^{-4}$, significantly lower than $Omega_{rm GAS}$ estimates in both galaxies in the local Universe and damped Lyman-$alpha$ absorbers at $z geq 2.2$. Massive blue star-forming galaxies thus do not appear to dominate the neutral atomic gas content of the Universe at $z approx 1.3$.
78 - N. Kanekar 2018
The nature of absorption-selected galaxies and their connection to the general galaxy population have been open issues for more than three decades, with little information available on their gas properties. Here we show, using detections of carbon mo noxide (CO) emission with the Atacama Large Millimeter/submillimeter Array (ALMA), that five of seven high-metallicity, absorption-selected galaxies at intermediate redshifts, $z approx 0.5-0.8$, have large molecular gas masses, $M_{rm Mol} approx (0.6 - 8.2) times 10^{10} : {rm M}_odot$ and high molecular gas fractions ($f_{rm Mol} equiv : M_{rm Mol}/(M_ast + M_{rm Mol}) approx 0.29-0.87)$. Their modest star formation rates (SFRs), $approx (0.3-9.5) : {rm M}_odot$ yr$^{-1}$, then imply long gas depletion timescales, $approx (3 - 120)$ Gyr. The high-metallicity absorption-selected galaxies at $z approx 0.5-0.8$ appear distinct from populations of star-forming galaxies at both $z approx 1.3-2.5$, during the peak of star formation activity in the Universe, and lower redshifts, $z lesssim 0.05$. Their relatively low SFRs, despite the large molecular gas reservoirs, may indicate a transition in the nature of star formation at intermediate redshifts, $z approx 0.7$.
We use observations made with the Giant Metrewave Radio Telescope (GMRT) to probe the neutral hydrogen (HI) gas content of field galaxies in the VIMOS VLT Deep Survey (VVDS) 14h field at $z approx 0.32$. Because the HI emission from individual galaxi es is too faint to detect at this redshift, we use an HI spectral stacking technique using the known optical positions and redshifts of the 165 galaxies in our sample to co-add their HI spectra and thus obtain the average HI mass of the galaxies. Stacked HI measurements of 165 galaxies show that 95 per cent of the neutral gas is found in blue, star-forming galaxies. Among these galaxies, those having lower stellar mass are more gas-rich than more massive ones. We apply a volume correction to our HI measurement to evaluate the HI gas density at $z approx 0.32$ as $Omega_{HI}=(0.50pm0.18) times 10^{-3}$ in units of the cosmic critical density. This value is in good agreement with previous results at z < 0.4, suggesting no evolution in the neutral hydrogen gas density over the last $sim 4$ Gyr. However the $z approx 0.32$ gas density is lower than that at $z sim 5$ by at least a factor of two.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا