ترغب بنشر مسار تعليمي؟ اضغط هنا

A Jet Model for the Afterglow Emission from GRB000301C

52   0   0.0 ( 0 )
 نشر من قبل Edo Berger
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present broad-band radio observations of the afterglow of GRB000301C, spanning from 1.4 to 350 GHz for the period of 3 to 83 days after the burst. This radio data, in addition to measurements at the optical bands, suggest that the afterglow arises from a collimated outflow, i.e. a jet. To test this hypothesis in a self-consistent manner, we employ a global fit and find that a model of a jet, expanding into a constant density medium (ISM+jet), provides the best fit to the data. A model of the burst occurring in a wind-shaped circumburst medium (wind-only model) can be ruled out, and a wind+jet model provides a much poorer fit of the optical/IR data than the ISM+jet model. In addition, we present the first clear indication that the reported fluctuations in the optical/IR are achromatic with similar amplitudes in all bands, and possibly extend into the radio regime. Using the parameters derived from the global fit, in particular a jet break time, t_{jet}=7.5 days, we infer a jet opening angle of theta=0.2, and consequently the estimate of the emitted energy in the GRB itself is reduced by a factor of 50 relative to the isotropic value, giving E=1.1 times 10^{51} ergs.



قيم البحث

اقرأ أيضاً

138 - R. Sagar 2000
The CCD magnitudes in Johnson V and Cousins R and I photometric passbands are determined for GRB 000301C afterglow starting ~ 1.5 day after the gamma-ray burst. In fact we provide the earliest optical observations for this burst. Light curves of the afterglow emissions in U, B, V, R, I, J and K passbands are obtained by combining the present measurements with the published data. Flux decay shows a very uncommon variation relative to other well observed GRBs. Overall, there is a steepening of the optical and near-infrared flux decay caused by a geometric and sideways expanding jet. This is superimposed by a short term variability especially during early time (Delta t < 8 days). The cause of variability is not well understood, though it has occurred simultaneously with similar amplitude in all the filters. We derive the early and late time flux decay constants using jet model. The late time flux decay is the steepest amongst the GRB OTs observed so far with alpha ~ 3. Steepening in the flux decay seems to have started simultaneously around Delta t ~ 7.6 day in all passbands. The value of spectral index in the optical-near IR region is ~ -1.0. Redshift determination with z=2.0335 indicates cosmological origin of the GRB having a luminosity distance of 16.6 Gpc. Thus it becomes the second farthest amongst the GRBs with known distances. An indirect estimate of the fluence > 20 keV indicates, if isotropic,> =10^53 ergs of release of energy. The enormous amount of released energy will be reduced, if the radiation is beamed which is the case for this event. Using a jet break time of 7.6 days, we infer a jet opening angle of ~ 0.15 radian. This means the energy released is reduced by a factor of ~ 90 relative to the isotropic value.
The afterglow of GRB 170817A has been detected for more than three years, but the origin of the multi-band afterglow light curves remains under debate. A classical top-hat jet model is faced with difficulties in producing a shallow rise of the afterg low light curves as observed $(F_{ u} propto T^{0.8})$. Here we reconsider the model of stratified ejecta with energy profile of $E(>Gamma beta)=E_0(Gamma beta)^{-k}$ as the origin of the afterglow light curves of the burst, where $Gamma$ and $beta$ are the Lorentz factor and speed of the ejecta, respectively. $k$ is the power-law slope of the energy profile. We consider the ejecta are collimated into jets. Two kinds of jet evolutions are investigated, including a lateral-spreading jet and a non-lateral-spreading jet. We fit the multi-band afterglow light curves, including the X-ray data at one thousand days post-burst, and find that both the models of the spreading and non-spreading jets can fit the light curves well, but the observed angular size of the source and the apparent velocity of the flux centroid for the spreading jet model are beyond the observation limits, while the non-spreading jet model meets the observation limits. Some of the best-fit parameters for the non-spreading jet model, such as the number density of the circumburst medium $sim10^{-2}$ cm$^{-3}$ and the total jet kinetic energy $E sim 4.8times 10^{51}$ erg, also appear plausible. The best-fit slope of the jet energy profile is $k sim 7.1$. Our results suggest that the afterglow of GRB 170817A may arise from the stratified jet and that the lateral spreading of the jet is not significant.
High-energy emission of extragalactic objects is known to take place in relativistic jets, but the nature, the location, and the emission processes of the emitting particles are still unknown. One of the models proposed to explain the formation of re lativistic ejections and their associated non-thermal emission is the two-flow model, where the jets are supposed to be composed of two different flows, a mildly relativistic baryonic jet surrounding a fast, relativistically moving electron-positron plasma. Here we present the simulation of the emission of such a structure taking into account the main sources of photons that are present in active galactic nuclei (AGNs). We reproduce the broadband spectra of radio-loud AGNs with a detailed model of emission taking into account synchrotron and inverse-Compton emission by a relativistically moving beam of electron-positron, heated by a surrounding turbulent baryonic jet. We compute the density and energy distribution of a relativistic pair plasma all along a jet, taking into account the synchrotron and inverse-Compton process on the various photon sources present in the core of the AGN, as well as the pair creation and annihilation processes. We use semi-analytical approximations to quickly compute the inverse-Compton process on a thermal photon distribution with any anisotropic angular distribution. The anisotropy of the photon field is also responsible for the bulk acceleration of the pair plasma through the Compton rocket effect, thus imposing the plasma velocity along the jet. As an example, the simulated emerging spectrum is compared to the broadband emission of 3C273. In the case of 3C273, we obtain an excellent fit of the average broadband energy distribution by assuming physical parameters compatible with known estimates.
86 - Maxim Lyutikov 2013
We discuss three topics: (i) the dynamics of afterglow jet breaks; (ii) the origin of Fermi-LAT photons; (iii) the electromagnetic model of short GRBs
We present radio, millimeter and optical observations of the afterglow of GRB030329. UBVR_{C}I_{C} photometry is presented for a period of 3 hours to 34 days after the burst. Radio monitoring at 1280 MHz has been carried out using the GMRT for more t han a year. Simultaneous millimeter observations at 90 GHz and 230 GHz have been obtained from the Swedish-ESO Submillimeter Telescope (SEST) and the IRAM-PdB interferometer over more than a month following the burst. We use these data to constrain the double jet model proposed by Berger et al. (2003) for this afterglow. We also examine whether instead of the two jets being simultaneously present, the wider jet could result from the initially narrow jet, due to a fresh supply of energy from the central engine after the ``jet break.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا