ترغب بنشر مسار تعليمي؟ اضغط هنا

Afterglow jet breaks, GeV photons and the electromagnetic model of short GRBs

57   0   0.0 ( 0 )
 نشر من قبل Maxim Lyutikov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maxim Lyutikov




اسأل ChatGPT حول البحث

We discuss three topics: (i) the dynamics of afterglow jet breaks; (ii) the origin of Fermi-LAT photons; (iii) the electromagnetic model of short GRBs

قيم البحث

اقرأ أيضاً

52 - Z. Bosnjak , P. Kumar 2011
Photons of energy larger than 100 MeV from long-GRBs arrive a few seconds after <10 MeV photons do. We show that this delay is a natural consequence of a magnetic dominated relativistic jet. The much slower acceleration of a magnetic jet with radius (compared with a hot baryonic outflow) results in high energy gamma-ray photons to be converted to electron-positron pairs out to a larger radius whereas lower energy gamma-rays of energy less than ~10 MeV can escape when the jet crosses the Thomson-photosphere. The resulting delay for the arrival of high energy photons is found to be similar to the value observed by the Fermi satellite for a number of GRBs. A prediction of this model is that the delay should increase with photon energy (E) as E^{0.17} for E>100 MeV. The delay depends almost linearly on burst redshift, and on the distance from the central compact object where the jet is launched (R_0). Therefore, the delay in arrival of >10^2 MeV photons can be used to estimate burst redshift if the magnetic jet model for gamma-ray generation is correct and R_0 is roughly the same for long-GRBs.
We report the best evidence to date of a jet break in a short Gamma-Ray Burst (GRB) afterglow, using Chandra and Swift XRT observations of the X-ray afterglow of GRB 051221A. The combined X-ray light curve, which has three breaks, is similar to those commonly observed in Swift observations of long GRBs. A flat segment of the light curve at ~0.1 days after the burst represents the first clear case of strong energy injection in the external shock of a short GRB afterglow. The last break occurs at ~4 days post-burst and breaks to a power-law decay index of ~2. We interpret this as a jet break, with important implications for models of short GRBs, since it requires collimation of the afterglow into a jet with an initial opening angle ~4-8 degrees and implies a total jet kinetic energy of E_jet ~(1-5) x 10^{49} erg. Combined with the lack of a jet break in GRB 050724, this suggests a wide range in jet collimation in short GRBs, with at least some having collimation similar to that found in long GRBs, though with significantly lower jet energies.
471 - D. Grupe 2006
We report the results of the chandra observations of the swift-discovered short Gamma-Ray Burst GRB 050724. chandra observed this burst twice, about two days after the burst and a second time three weeks later. The first chandra pointing occurred at the end of a strong late-time flare. About 150 photons were detected during this 49.3 ks observation in the 0.4-10.0 keV range. The spectral fit is in good agreement with spectral analysis of earlier swift XRT data. In the second chandra pointing the afterglow was clearly detected with 8 background-subtracted photons in 44.6 ks. From the combined swift XRT and chandra-ACIS-S light curve we find significant flaring superposed on an underlying power-law decay slope of $alpha$=0.98$^{+0.11}_{-0.09}$. There is no evidence for a break between about 1 ks after the burst and the last chandra pointing about three weeks after the burst. The non-detection of a jet break places a lower limit of 25$^{circ}$ on the jet opening angle, indicating that the outflow is less strongly collimated than most previously-reported long GRBs. This implies that the beaming corrected energy of GRB 050724 is at least $4times 10^{49}$ ergs.
105 - Kai-Kai Duan 2019
GW170817, the first neutron star merger event detected by advanced LIGO/Virgo detectors, was associated with an underluminous short duration GRB 170817A. In this work we compare the forward shock afterglow emission of GW170817/GRB 170817A to other lu minous short GRBs (sGRBs) with both a known redshift and an afterglow emission lasting at least one day after the burst. In the rapid decay phase, the afterglow emission of the bright sGRBs and GW170817/GRB 170817A form a natural and continuous sequence, though separated by an observation time gap. If viewed on-axis, the forward shock afterglow emission of GW170817/GRB 170817A would be among the brightest ones detected so far. This provides a strong evidence for the GW170817-like merger origin of bright sGRBs, and suggests that the detection of the forward shock afterglow emission of most neutron star merger events are more challenging than the case of GW170817 since usually the mergers will be more distant and the viewing angles are plausibly higher.
We study the observed correlations between the duration and luminosity of the early afterglow plateau and the isotropic gamma-ray energy release during the prompt phase. We discuss these correlations in the context of two scenarios for the origin of the plateaus. In the first one the afterglow is made by the forward shock and the plateau results from variations of the microphysics parameters while in the second one the early afterglow is made by a long-lived reverse shock propagating in a low Lorentz factor tail of the ejecta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا