ﻻ يوجد ملخص باللغة العربية
Recently, the detection of discrete features in the X-ray afterglow spectra of GRB970508 and GRB970828 was reported. The most natural interpretation of these features is that they are redshifted Fe K emission complexes. The identification of the line emission mechanism has drastic implications for the inferred mass of radiating material, end hence the nature of the burst site. X-ray spectroscopy provides a direct observational constraint on these properties of gamma-ray bursters. We briefly discuss how these constraints arise, in the context of an application to the spectrum of GRB970508.
X-Ray and Ultraviolet (UV) observations of the outer solar atmosphere have been used for many decades to measure the fundamental parameters of the solar plasma. This review focuses on the optically thin emission from the solar atmosphere, mostly foun
Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the
We present systematic spectral analyses of GRBs detected with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO) during its entire nine years of operation. This catalog contains two types of spectra ext
Gamma-ray bursts (GRBs) and their early afterglows ionise their circumburst material. Only high-energy spectroscopy therefore, allows examination of the matter close to the burst itself. Soft X-ray absorption allows an estimate to be made of the tota
In this paper we present the observations performed by the BeppoSAX Gamma-Ray Burst Monitor (GRBM) and Wide Field Cameras (WFC) of GB960720. We derive a precise localization (3 arcmin radius) and fast broad band (2-700 keV) spectral evolution of the