ترغب بنشر مسار تعليمي؟ اضغط هنا

The metallicity of gamma-ray burst environments from high energy observations

126   0   0.0 ( 0 )
 نشر من قبل Darach Watson
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray bursts (GRBs) and their early afterglows ionise their circumburst material. Only high-energy spectroscopy therefore, allows examination of the matter close to the burst itself. Soft X-ray absorption allows an estimate to be made of the total column density in metals. The detection of the X-ray afterglow can also be used to place a limit on the total gas column along the line of sight based on the Compton scattering opacity. Such a limit would enable, for the first time, the determination of lower limits on the metallicity in the circumburst environments of GRBs. In this paper, we determine the limits that can be placed on the total gas column density in the vicinities of GRBs based on the Compton scattering. We simulate the effects of Compton scattering on a collimated beam of high energy photons passing through a shell of high column density material to determine the expected lightcurves, luminosities, and spectra. We compare these predictions to observations, and determine what limits can realistically be placed on the total gas column density. The smearing out of pulses in the lightcurve from Compton scattering is not likely to be observable, and its absence does not place strong constraints on the Compton depth for GRBs. However, the distribution of observed luminosities of bursts allows us to place statistical, model-dependent limits that are typically <~1e25 cm^{-2} for less luminous bursts, and as low as ~1e24 cm$^{-2} for the most luminous. Using the shape of the high-energy broadband spectrum, however, in some favourable cases, limits as low as ~5e24 cm^{-2} can placed on individual bursts, implying metallicity lower limits from X- and gamma-rays alone from 0 up to 0.01 Z/Zsun. At extremely high redshifts, this limit would be at least 0.02 Z/Z_sun, enough to discriminate population III from non-primordial GRBs.



قيم البحث

اقرأ أيضاً

Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy n eutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that GRBs could contribute up to a few % to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin. Gamma-ray bursts, especially low-luminosity ones, could however be the main sources of the IceCube high-energy neutrino flux in the PeV range. While high-luminosity and low-luminosity GRBs have comparable intensities, the contribution from the short-duration component is significantly smaller. Our findings confirm the most-recent IceCube results on the GRB searches and suggest that larger exposure is mandatory to detect high-energy neutrinos from high-luminosity GRBs in the near future.
Gamma-ray burst (GRB) observations at very high energies (VHE, E > 100 GeV) can impose tight constraints on some GRB emission models. Many GRB afterglow models predict a VHE component similar to that seen in blazars and plerions, in which the GRB spe ctral energy distribution has a double-peaked shape extending into the VHE regime. VHE emission coincident with delayed X-ray flare emission has also been predicted. GRB follow-up observations have had high priority in the observing program at the Whipple 10m Gamma-ray Telescope and GRBs will continue to be high priority targets as the next generation observatory, VERITAS, comes on-line. Upper limits on the VHE emission, at late times (>~4 hours), from seven GRBs observed with the Whipple Telescope are reported here.
170 - Daniel A. Perley 2013
We present a preliminary data release from our multi-year campaign at Keck Observatory to study the host galaxies of a large sample of Swift-era gamma-ray bursts via multi-color ground-based optical imaging and spectroscopy. With over 160 targets obs erved to date (and almost 100 host detections, most of which have not previously been reported in the literature) our effort represents the broadest GRB host survey to date. While targeting was heterogeneous, our observations span the known diversity of GRBs including short bursts, long bursts, spectrally soft GRBs (XRFs), ultra-energetic GRBs, X-ray faint GRBs, dark GRBs, SN-GRBs, and other sub-classes. We also present a preview of our database (currently available online via a convenient web interface) including a catalog of multi-color photometry, redshifts and line IDs. Final photometry and reduced imaging and spectra will be available in the near future.
Recently, the detection of discrete features in the X-ray afterglow spectra of GRB970508 and GRB970828 was reported. The most natural interpretation of these features is that they are redshifted Fe K emission complexes. The identification of the line emission mechanism has drastic implications for the inferred mass of radiating material, end hence the nature of the burst site. X-ray spectroscopy provides a direct observational constraint on these properties of gamma-ray bursters. We briefly discuss how these constraints arise, in the context of an application to the spectrum of GRB970508.
We report High Energy Transient Explorer 2 (HETE-2) Wide Field X-ray Monitor/French Gamma Telescope observations of XRF030723 along with observations of the XRF afterglow made using the 6.5m Magellan Clay telescope and the Chandra X-ray Observatory. The observed peak energy E_pk_obs of the nu F_nu burst spectrum is found to lie within (or below) the WXM 2-25 keV passband at 98.5% confidence, and no counts are detected above 30 keV. Our best fit value is E_pk_obs=8.4+3.5/-3.4 keV. The ratio of X-ray to Gamma-ray flux for the burst follows a correlation found for GRBs observed with HETE-2, and the duration of the burst is similar to that typical of long-duration GRBs. If we require that the burst isotropic equivalent energy E_iso and E_pk_rest satisfy the relation discovered by Amati et al. (2002), a redshift of z=0.38+0.36/-0.18 can be determined, in agreement with constraints determined from optical observations. We are able to fit the X-ray afterglow spectrum and to measure its temporal fade. Although the best-fit fade is shallower than the concurrent fade in the optical, the spectral similarity between the two bands indicates that the X-ray fade may actually trace the optical fade. If this is the case, the late time rebrightening observed in the optical cannot be due to a supernova bump. We interpret the prompt and afterglow X-ray emission as arising from a jetted GRB observed off-axis and possibly viewed through a complex circumburst medium due to a progenitor wind.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا