ترغب بنشر مسار تعليمي؟ اضغط هنا

The BATSE 5B Gamma-Ray Burst Spectral Catalog

158   0   0.0 ( 0 )
 نشر من قبل Adam Goldstein
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present systematic spectral analyses of GRBs detected with the Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma-Ray Observatory (CGRO) during its entire nine years of operation. This catalog contains two types of spectra extracted from 2145 GRBs and fitted with five different spectral models resulting in a compendium of over 19000 spectra. The models were selected based on their empirical importance to the spectral shape of many GRBs, and the analysis performed was devised to be as thorough and objective as possible. We describe in detail our procedures and criteria for the analyses, and present the bulk results in the form of parameter distributions. This catalog should be considered an official product from the BATSE Science Team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).



قيم البحث

اقرأ أيضاً

The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) has triggered on 1637 cosmic gamma-ray bursts between 1991 April 19 and 1996 August 29. These events constitute the Fourth BATSE burst catalog. The current version (4Br) has been revised from the version first circulated on CD-ROM in September 1997 (4B) to include improved locations for a subset of bursts that have been reprocssed using additional data. A significant difference from previous BATSE catalogs is the inclusion of bursts from periods when the trigger energy range differed from the nominal 50-300 keV. We present tables of the burst occurrence times, locations, peak fluxes, fluences, and durations. In general, results from previous BATSE catalogs are confirmed here with greater statistical significance.
We present Interplanetary Network (IPN) localization information for 343 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) between the end of the 4th BATSE catalog and the end of the Compton Gamma-Ray Observatory (CGRO) m ission, obtained by analyzing the arrival times of these bursts at the Ulysses, Near Earth Asteroid Rendezvous (NEAR), and CGRO spacecraft. For any given burst observed by CGRO and one other spacecraft, arrival time analysis (or triangulation) results in an annulus of possible arrival directions whose half-width varies between 11 arcseconds and 21 degrees, depending on the intensity, time history, and arrival direction of the burst,as well as the distance between the spacecraft. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the area of a factor of 20. When all three spacecraft observe a burst, the result is an error box whose area varies between 1 and 48000 square arcminutes, resulting in an average reduction of the BATSE error circle area of a factor of 87.
We present the systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first ten years of operation. This catalog contains two types of spectra; time-integrated spectral fits and spectral fits at the brightest time bin, from 2297 GRBs, resulting in a compendium of over 18000 spectra. The four different spectral models used for fitting the spectra were selected based on their empirical importance to the shape of many GRBs. We describe in detail our procedure and criteria for the analyses, and present the bulk results in the form of parameter distributions both in the observer frame and in the GRB rest frame. 941 GRBs from the first four years have been re-fitted using the same methodology as that of the 1356 GRBs in years five through ten. The data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center (HEASARC).
Despite over 50 years of research, many open questions remain about the origin and nature of GRBs. Polarization measurements of the prompt emission of these extreme phenomena have long been thought to be the key to answering a range of these question s. The POLAR detector was designed to produce the first set of detailed and reliable polarization measurements in an energy range of approximately 50-500 keV. During late 2016 and early 2017, POLAR detected a total of 55 GRBs. Analysis results of 5 of these GRBs have been reported in the past. The results were found to be consistent with a low or unpolarized flux. However, previous reports by other collaborations found high levels of polarization. We study the polarization for all the 14 GRBs observed by POLAR for which statistically robust inferences are possible. Additionally, time-resolved polarization studies are performed on GRBs with sufficient apparent flux. A publicly available polarization analysis tool, developed within the 3ML framework, was used to produce statistically robust results. The method allows to combine spectral and polarimetric data from POLAR with spectral data from the Fermi GBM and Swift-BAT to jointly model the spectral and polarimetric parameters. The time integrated analysis finds all results to be compatible with a low or zero polarization with the caveat that, when time-resolved analysis is possible within individual pulses, we observe moderate polarization with a rapidly changing polarization angle. Thus, time-integrated polarization results, while pointing to lower polarization are potentially an artifact of summing over the changing polarization signal and thus, washing out the true moderate polarization. Therefore, we caution against over interpretation of any time-integrated results and encourage one to wait for more detailed polarization measurements from forthcoming missions such as POLAR-2 and LEAP.
To date, the Burst Alert Telescope (BAT) onboard Swift has detected ~ 1000 gamma-ray bursts (GRBs), of which ~ 360 GRBs have redshift measurements, ranging from z = 0.03 to z = 9.38. We present the analyses of the BAT-detected GRBs for the past ~ 11 years up through GRB151027B. We report summaries of both the temporal and spectral analyses of the GRB characteristics using event data (i.e., data for each photon within approximately 250 s before and 950 s after the BAT trigger time), and discuss the instrumental sensitivity and selection effects of GRB detections. We also explore the GRB properties with redshift when possible. The result summaries and data products are available at http://swift.gsfc.nasa.gov/results/batgrbcat/index.html . In addition, we perform searches for GRB emissions before or after the event data using the BAT survey data. We estimate the false detection rate to be only one false detection in this sample. There are 15 ultra-long GRBs (~ 2% of the BAT GRBs) in this search with confirmed emission beyond ~ 1000 s of event data, and only two GRBs (GRB100316D and GRB101024A) with detections in the survey data prior to the starting of event data. (Some figures shown here are in lower resolution due to the size limit on arXiv. The full resolution version can be found at http://swift.gsfc.nasa.gov/results/batgrbcat/3rdBATcatalog.pdf )
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا