ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion Rates onto Massive Black Holes in Four Quiescent Elliptical Galaxies

74   0   0.0 ( 0 )
 نشر من قبل J. M. Wrobel
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Four quiescent elliptical galaxies were imaged with the NRAO VLA at 8.5 GHz. Within the context of canonical advection-dominated accretion flows (ADAFs), these VLA images plus published black hole masses constrain the accretion rates to be $ <1.6times10^{-4}$, $ <3.6times10^{-4}$, $le7.8times10^{-4}$, and $le7.4times10^{-4}$ of the Eddington rates. These ADAF accretion rates derived at 8.5 GHz have important implications for the levels of soft and hard X-rays expected from these quiescent galaxies.



قيم البحث

اقرأ أيضاً

156 - Chris Done 2010
These notes resulted from a series of lectures at the IAC winter school. They are designed to help students, especially those just starting in subject, to get hold of the fundamental tools used to study accretion powered sources. As such, the referen ces give a place to start reading, rather than representing a complete survey of work done in the field. I outline Compton scattering and blackbody radiation as the two predominant radiation mechanisms for accreting black holes, producing the hard X-ray tail and disc spectral components, respectively. The interaction of this radiation with matter can result in photo-electric absorption and/or reflection. While the basic processes can be found in any textbook, here I focus on how these can be used as a toolkit to interpret the spectra and variability of black hole binaries (hereafter BHB) and Active Galactic Nuclei (AGN). I also discuss how to use these to physically interpret real data using the publicly available XSPEC spectral fitting package (Arnaud et al 1996), and how this has led to current models (and controversies) of the accretion flow in both BHB and AGN.
Short-lived intermittent phases of super-critical (super-Eddington) growth, coupled with star formation via positive feedback, may account for early growth of massive black holes (MBH) and coevolution with their host spheroids. We estimate the possib le growth rates and duty cycles of these episodes, both assuming slim accretion disk solutions, and adopting the results of recent numerical simulations. The angular momentum of gas joining the accretion disk determines the length of the accretion episodes, and the final mass a MBH can reach. The latter can be related to the gas velocity dispersion, and in galaxies with low-angular momentum gas the MBH can get to a higher mass. When the host galaxy is able to sustain inflow rates at 1-100 msunyr, replenishing and circulation lead to a sequence of short (~1e4-1e7 years), heavily obscured accretion episodes that increase the growth rates, with respect to an Eddington-limited case, by several orders of magnitude. Our model predicts that the ratio of MBH accretion rate to star formation rate is 1e2 or higher, leading, at early epochs, to a ratio of MBH to stellar mass higher than the canonical value of ~1e-3, in agreement with current observations. Our model makes specific predictions that long-lived super-critical accretion occurs only in galaxies with copious low-angular momentum gas, and in this case the MBH is more massive at fixed velocity dispersion.
We present a theoretical model for driving jets by accretion onto Kerr black holes and try to give an answer to the following question: How much energy could be extracted from a rotating black hole and its accretion disk in order to power relativistic jets in Active Galactic Nuclei?
Spectral formation in steady state, spherical accretion onto neutron stars and black holes is examined by solving numerically and analytically the equation of radiative transfer. The photons escape diffusively and their energy gains come from their s cattering off thermal electrons in the converging flow of the accreting gas. We show that the bulk motion of the flow is more efficient in upscattering photons than thermal Comptonization in the range of non-relativistic electron temperatures. The spectrum observed at infinity is a power law with an exponential turnover at energies of order the electron rest mass. Especially in the case of accretion into a black hole, the spectral energy power-law index is distributed around 1.5. Because bulk motion near the horizon (1-5 Schwarzschild radii) is most likely a necessary characteristic of accretion into a black hole, we claim that observations of an extended power law up to about the electron rest mass, formed as a result of bulk motion Comptonization, is a real observational evidence for the existence of an underlying black hole.
We examine unresolved nuclear X-ray sources in 57 brightest cluster galaxies to study the relationship between nuclear X-ray emission and accretion onto supermassive black holes (SMBHs). The majority of the clusters in our sample have prominent X-ray cavities embedded in the surrounding hot atmospheres, which we use to estimate mean jet power and average accretion rate onto the SMBHs over the past several hundred Myr. We find that ~50% of the sample have detectable nuclear X-ray emission. The nuclear X-ray luminosity is correlated with average accretion rate determined using X-ray cavities, which is consistent with the hypothesis that nuclear X-ray emission traces ongoing accretion. The results imply that jets in systems that have experienced recent AGN outbursts, in the last ~10^7yr, are `on at least half of the time. Nuclear X-ray sources become more luminous with respect to the mechanical jet power as the mean accretion rate rises. We show that nuclear radiation exceeds the jet power when the mean accretion rate rises above a few percent of the Eddington rate, where the AGN apparently transitions to a quasar. The nuclear X-ray emission from three objects (A2052, Hydra A, M84) varies by factors of 2-10 on timescales of 6 months to 10 years. If variability at this level is a common phenomenon, it can account for much of the scatter in the relationship between mean accretion rate and nuclear X-ray luminosity. We find no significant change in the spectral energy distribution as a function of luminosity in the variable objects. The relationship between accretion and nuclear X-ray luminosity is consistent with emission from either a jet, an ADAF, or a combination of the two, although other origins are possible. We also consider the longstanding problem of whether jets are powered by the accretion of cold circumnuclear gas or nearly spherical inflows of hot keV gas.[abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا