ترغب بنشر مسار تعليمي؟ اضغط هنا

Overmerging in N-body simulations

181   0   0.0 ( 0 )
 نشر من قبل Eelco van Kampen
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eelco van Kampen




اسأل ChatGPT حول البحث

The aim of this paper is to clarify the notion and cause of overmerging in N-body simulations, and to present analytical estimates for its timescale. Overmerging is the disruption of subhaloes within embedding haloes due to {it numerical} problems connected with the discreteness of N-body dynamics. It is shown that the process responsible for overmerging is particle-subhalo two-body heating. Various solutions to the overmerging problem are discussed



قيم البحث

اقرأ أيضاً

In the next decade, cosmological surveys will have the statistical power to detect the absolute neutrino mass scale. N-body simulations of large-scale structure formation play a central role in interpreting data from such surveys. Yet these simulatio ns are Newtonian in nature. We provide a quantitative study of the limitations to treating neutrinos, implemented as N-body particles, in N-body codes, focusing on the error introduced by neglecting special relativistic effects. Special relativistic effects are potentially important due to the large thermal velocities of neutrino particles in the simulation box. We derive a self-consistent theory of linear perturbations in Newtonian and non-relativistic neutrinos and use this to demonstrate that N-body simulations overestimate the neutrino free-streaming scale, and cause errors in the matter power spectrum that depend on the initial redshift of the simulations. For $z_{i} lesssim 100$, and neutrino masses within the currently allowed range, this error is $lesssim 0.5%$, though represents an up to $sim 10%$ correction to the shape of the neutrino-induced suppression to the cold dark matter power spectrum. We argue that the simulations accurately model non-linear clustering of neutrinos so that the error is confined to linear scales.
120 - M. Trenti 2008
Gravitational N-body simulations, that is numerical solutions of the equations of motions for N particles interacting gravitationally, are widely used tools in astrophysics, with applications from few body or solar system like systems all the way up to galactic and cosmological scales. In this article we present a summary review of the field highlighting the main methods for N-body simulations and the astrophysical context in which they are usually applied.
Commercial graphics processors (GPUs) have high compute capacity at very low cost, which makes them attractive for general purpose scientific computing. In this paper we show how graphics processors can be used for N-body simulations to obtain improv ements in performance over current generation CPUs. We have developed a highly optimized algorithm for performing the O(N^2) force calculations that constitute the major part of stellar and molecular dynamics simulations. In some of the calculations, we achieve sustained performance of nearly 100 GFlops on an ATI X1900XTX. The performance on GPUs is comparable to specialized processors such as GRAPE-6A and MDGRAPE-3, but at a fraction of the cost. Furthermore, the wide availability of GPUs has significant implications for cluster computing and distributed computing efforts like Folding@Home.
We describe some results obtained with N-MODY, a code for N-body simulations of collisionless stellar systems in modified Newtonian dynamics (MOND). We found that a few fundamental dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter. In particular, violent relaxation, phase mixing and galaxy merging take significantly longer in MOND than in Newtonian gravity, while dynamical friction is more effective in a MOND system than in an equivalent Newtonian system with dark matter.
Two aspects of our recent N-body studies of star clusters are presented: (1) What impact does mass segregation and selective mass loss have on integrated photometry? (2) How well compare results from N-body simulations using NBODY4 and STARLAB/KIRA?
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا