ترغب بنشر مسار تعليمي؟ اضغط هنا

N-body simulations in modified Newtonian dynamics

119   0   0.0 ( 0 )
 نشر من قبل Carlo Nipoti
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe some results obtained with N-MODY, a code for N-body simulations of collisionless stellar systems in modified Newtonian dynamics (MOND). We found that a few fundamental dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter. In particular, violent relaxation, phase mixing and galaxy merging take significantly longer in MOND than in Newtonian gravity, while dynamical friction is more effective in a MOND system than in an equivalent Newtonian system with dark matter.



قيم البحث

اقرأ أيضاً

We describe the numerical code N-MODY, a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.
We show how standard Newtonian N-body simulations can be interpreted in terms of the weak-field limit of general relativity by employing the recently developed Newtonian motion gauge. Our framework allows the inclusion of radiation perturbations and the non-linear evolution of matter. We show how to construct the weak-field metric by combining Newtonian simulations with results from Einstein-Boltzmann codes. We discuss observational effects on weak lensing and ray tracing, identifying important relativistic corrections.
261 - C. Nipoti 2008
We have tested a previous analytical estimate of the dynamical friction timescale in Modified Newtonian Dynamics (MOND) with fully non-linear N-body simulations. The simulations confirm that the dynamical friction timescale is significantly shorter i n MOND than in equivalent Newtonian systems, i.e. systems with the same phase-space distribution of baryons and additional dark matter. An apparent conflict between this result and the long timescales determined for bars to slow and mergers to be completed in previous N-body simulations of MOND systems is explained. The confirmation of the short dynamical-friction timescale in MOND underlines the challenge that the Fornax dwarf spheroidal poses to the viability of MOND.
The N-body gauge allows the introduction of relativistic effects in Newtonian cosmological simulations. Here we extend this framework to general Horndeski gravity theories, and investigate the relativistic effects that the scalar field introduces in the matter power spectrum at intermediate and large scales. In particular, we show that the kineticity function at these scales enhances the amplitude of the signal of contributions coming from the extra degree of freedom. Using the Quasi-Static Approximation (QSA), we separate modified gravity effects into two parts: one that only affects small-scale physics, and one that is due to relativistic effects. This allows our formalism to be readily implemented in modified gravity N-body codes in a straightforward manner, e.g., relativistic effects can be included as an additional linear density field in simulations. We identify the emergence of gravity acoustic oscillations (GAOs) in the matter power spectrum at large scales, $k sim 10^{-3}-10^{-2}$ Mpc$^{-1}$. GAO features have a purely relativistic origin, coming from the dynamical nature of the scalar field. GAOs may be enhanced to detectable levels by the rapid evolution of the dark energy sound horizon in certain modified gravity models and can be seen as a new test of gravity at scales probed by future galaxy and intensity-mapping surveys.
We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zeldovich Approximation to no ntrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond {Lambda}-Cold Dark Matter initial conditions for modifications of gravity outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا