ﻻ يوجد ملخص باللغة العربية
The Vehicle Fleet Sizing, Positioning and Routing Problem with Stochastic Customers (VFSPRP-SC) consists on pairing strategic decisions of depot positioning and fleet sizing with operational vehicle routing decisions while taking into account the inherent uncertainty of demand. We successfully solve the VFSPRP-SC with a methodology comprised of two main blocks: i) a scenario generation phase and ii) a two-stage stochastic program. For the first block, a set of scenarios is selected with a simulation-based approach that captures the behavior of the demand and allows us to come up with different solutions that could match different risk profiles. The second block is comprised of a facility location and allocation model and a Multi Depot Vehicle Routing Problem (MDVRP) assembled under a two-stage stochastic program. We propose several novel ideas within our methodology: problem specific cuts that serve as an approximation of the expected second stage costs as a function of first stage decisions; an activation paradigm that guides our main optimization procedure; and, a way of mapping feasible routes from one second-stage problem data into another; among others. We performed experiments for two cases: the first case considers the expected value of the demand, and the second case considers the right tail of the demand distribution, seeking a conservative solution. By using acceleration techniques we obtain solutions within 1 to 6 hours, reasonable times considering the strategic nature of the decision. For the ex-post evaluation, we solve 75% of the instances in less than 3 minutes, meaning that the methodology used to solve the MDVRP is well suited for daily operation.
Given the rise of electric vehicle (EV) adoption, supported by government policies and dropping technology prices, new challenges arise in the modeling and operation of electric transportation. In this paper, we present a model for solving the EV rou
Quantum annealing (QA) is a quantum computing algorithm that works on the principle of Adiabatic Quantum Computation (AQC), and it has shown significant computational advantages in solving combinatorial optimization problems such as vehicle routing p
This paper outlines an exact and a heuristic algorithm for the electric vehicle routing problem with a nonlinear charging function (E-VRP-NL) introduced by Montoya et al. (2017). The E-VRP-NL captures several realistic features of electric vehicles i
We consider the non-stationary stochastic lot sizing problem with backorder costs and make a cost comparison among different lot-sizing strategies. We initially provide an overview of the strategies and some corresponding solution approaches in the l
This paper considers the vehicle routing problem of a fleet operator to serve a set of transportation requests with flexible time windows. That is, the operator presents discounted transportation costs to customers to exchange the time flexibility of