ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparison of non-stationary stochastic lot-sizing strategies

62   0   0.0 ( 0 )
 نشر من قبل Roberto Rossi
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the non-stationary stochastic lot sizing problem with backorder costs and make a cost comparison among different lot-sizing strategies. We initially provide an overview of the strategies and some corresponding solution approaches in the literature. We then compare the cost performances of the lot-sizing strategies on a common test bed while taking into account the added value of realized demand information. The results of this numerical experience enable us to derive novel insights about the cost performance of different stochastic lot-sizing strategies under re-planning with respect to demand realization.



قيم البحث

اقرأ أيضاً

In this paper, we develop mixed integer linear programming models to compute near-optimal policy parameters for the non-stationary stochastic lot sizing problem under Bookbinder and Tans static-dynamic uncertainty strategy. Our models build on piecew ise linear upper and lower bounds of the first order loss function. We discuss different formulations of the stochastic lot sizing problem, in which the quality of service is captured by means of backorder penalty costs, non-stockout probability, or fill rate constraints. These models can be easily adapted to operate in settings in which unmet demand is backordered or lost. The proposed approach has a number of advantages with respect to existing methods in the literature: it enables seamless modelling of different variants of the above problem, which have been previously tackled via ad-hoc solution methods; and it produces an accurate estimation of the expected total cost, expressed in terms of upper and lower bounds. Our computational study demonstrates the effectiveness and flexibility of our models.
Production and inventory planning have become crucial and challenging in nowadays competitive industrial and commercial sectors, especially when multiple plants or warehouses are involved. In this context, this paper addresses the complexity of uncap acitated multi-plant lot-sizing problems. We consider a multi-item uncapacitated multi-plant lot-sizing problem with fixed transfer costs and show that two of its very restricted special cases are already NP-hard. Namely, we show that the single-item uncapacitated multi-plant lot-sizing problem with a single period and the multi-item uncapacitated two-plant lot-sizing problem with fixed transfer costs are NP-hard. Furthermore, as a direct implication of the proven results, we also show that a two-echelon multi-item lot-sizing with joint setup costs on transportation is NP-hard.
We investigate stochastic optimization problems under relaxed assumptions on the distribution of noise that are motivated by empirical observations in neural network training. Standard results on optimal convergence rates for stochastic optimization assume either there exists a uniform bound on the moments of the gradient noise, or that the noise decays as the algorithm progresses. These assumptions do not match the empirical behavior of optimization algorithms used in neural network training where the noise level in stochastic gradients could even increase with time. We address this behavior by studying convergence rates of stochastic gradient methods subject to changing second moment (or variance) of the stochastic oracle as the iterations progress. When the variation in the noise is known, we show that it is always beneficial to adapt the step-size and exploit the noise variability. When the noise statistics are unknown, we obtain similar improvements by developing an online estimator of the noise level, thereby recovering close variants of RMSProp. Consequently, our results reveal an important scenario where adaptive stepsize methods outperform SGD.
Tempelmeier (2007) considers the problem of computing replenishment cycle policy parameters under non-stationary stochastic demand and service level constraints. He analyses two possible service level measures: the minimum no stock-out probability pe r period ({alpha}-service level) and the so called fill rate, that is the fraction of demand satisfied immediately from stock on hand ({beta}-service level). For each of these possible measures, he presents a mixed integer programming (MIP) model to determine the optimal replenishment cycles and corresponding order-up-to levels minimizing the expected total setup and holding costs. His approach is essentially based on imposing service level dependent lower bounds on cycle order-up-to levels. In this note, we argue that Tempelmeiers strategy, in the {beta}-service level case, while being an interesting option for practitioners, does not comply with the standard definition of fill rate. By means of a simple numerical example we demonstrate that, as a consequence, his formulation might yield sub-optimal policies.
The Vehicle Fleet Sizing, Positioning and Routing Problem with Stochastic Customers (VFSPRP-SC) consists on pairing strategic decisions of depot positioning and fleet sizing with operational vehicle routing decisions while taking into account the inh erent uncertainty of demand. We successfully solve the VFSPRP-SC with a methodology comprised of two main blocks: i) a scenario generation phase and ii) a two-stage stochastic program. For the first block, a set of scenarios is selected with a simulation-based approach that captures the behavior of the demand and allows us to come up with different solutions that could match different risk profiles. The second block is comprised of a facility location and allocation model and a Multi Depot Vehicle Routing Problem (MDVRP) assembled under a two-stage stochastic program. We propose several novel ideas within our methodology: problem specific cuts that serve as an approximation of the expected second stage costs as a function of first stage decisions; an activation paradigm that guides our main optimization procedure; and, a way of mapping feasible routes from one second-stage problem data into another; among others. We performed experiments for two cases: the first case considers the expected value of the demand, and the second case considers the right tail of the demand distribution, seeking a conservative solution. By using acceleration techniques we obtain solutions within 1 to 6 hours, reasonable times considering the strategic nature of the decision. For the ex-post evaluation, we solve 75% of the instances in less than 3 minutes, meaning that the methodology used to solve the MDVRP is well suited for daily operation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا