ﻻ يوجد ملخص باللغة العربية
Quantum annealing (QA) is a quantum computing algorithm that works on the principle of Adiabatic Quantum Computation (AQC), and it has shown significant computational advantages in solving combinatorial optimization problems such as vehicle routing problems (VRP) when compared to classical algorithms. This paper presents a QA approach for solving a variant VRP known as multi-depot capacitated vehicle routing problem (MDCVRP). This is an NP-hard optimization problem with real-world applications in the fields of transportation, logistics, and supply chain management. We consider heterogeneous depots and vehicles with different capacities. Given a set of heterogeneous depots, the number of vehicles in each depot, heterogeneous depot/vehicle capacities, and a set of spatially distributed customer locations, the MDCVRP attempts to identify routes of various vehicles satisfying the capacity constraints such as that all the customers are served. We model MDCVRP as a quadratic unconstrained binary optimization (QUBO) problem, which minimizes the overall distance traveled by all the vehicles across all depots given the capacity constraints. Furthermore, we formulate a QUBO model for dynamic version of MDCVRP known as D-MDCVRP, which involves dynamic rerouting of vehicles to real-time customer requests. We discuss the problem complexity and a solution approach to solving MDCVRP and D-MDCVRP on quantum annealing hardware from D-Wave.
We give a probabilistic analysis of the unit-demand Euclidean capacitated vehicle routing problem in the random setting, where the input distribution consists of $n$ unit-demand customers modeled as independent, identically distributed uniform random
Full truckload transportation (FTL) in the form of freight containers represents one of the most important transportation modes in international trade. Due to large volume and scale, in FTL, delivery time is often less critical but cost and service q
The Vehicle Fleet Sizing, Positioning and Routing Problem with Stochastic Customers (VFSPRP-SC) consists on pairing strategic decisions of depot positioning and fleet sizing with operational vehicle routing decisions while taking into account the inh
Recent developments in urbanization and e-commerce have pushed businesses to deploy efficient systems to decrease their supply chain cost. Vendor Managed Inventory (VMI) is one of the most widely used strategies to effectively manage supply chains wi
Different retail and e-commerce companies are facing the challenge of assembling large numbers of time-critical picking orders that include both single-line and multi-line orders. To reduce unproductive picker working time as in traditional picker-to